Skip to main content

Birds Classification Based on Deep Transfer Learning

  • Conference paper
  • First Online:
Smart Computing and Communication (SmartCom 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12608))

Included in the following conference series:

Abstract

At present, there is no huge data set on bird classification, and the classic CUB-200-2011 data set has only 11 788 images, which are still unable to train a generalized classification and recognition model compared with ImageNet and other large data sets with millions of data. Therefore, using deep transfer learning, after tuning for bird recognition, is very valuable with large data sets training model parameters. In this paper, by comparing the training effect of common benchmark models in CUB-200-2011 dataset, ResNeXt model is selected as the transfer learning benchmark model for its well performance. Through optimizing the loss function and reducing the learning rate, the proposed model provides better performance for the data augmentation and adding the full connection layer. Compared with the benchmark model, the recognition rate of the proposed model can reach 84.43%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guangmei, Z.: A Checklist on the Classification and Distribution of the Birds of China. Beijing Science Press, Beijing (2017)

    Google Scholar 

  2. Mamalet, F., Garcia, C.: Simplifying ConvNets for Fast learning. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012. LNCS, vol. 7553, pp. 58–65. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33266-1_8

    Chapter  Google Scholar 

  3. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  4. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  5. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift (2015). arXiv preprint arXiv:1502.03167

  6. Szegedy, C., Vanhoucke, V., Ioffe, S. et al.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  7. Szegedy, C., Ioffe, S., Vanhoucke, V., et al.: Inception-v4, inception-resnet and the impact of residual connections on learning (2016). arXiv preprint arXiv:1602.07261

  8. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  9. He, K,. Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Xie, S., Girshick, R., Dollár, P., et al.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  11. Howard, A.G., Zhu, M., Chen, B., et al.: Mobilenets: Efficient convolutional neural networks for mobile vision applications (2017). arXiv preprint arXiv:1704.04861

  12. Sandler, M., Howard, A., Zhu, M., et al.: Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  13. Deng, J., Dong, W., Socher, R., et al.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  14. Wei, X.-S., Xie, C.-W., Wu, J., et al.: Mask-CNN: Localizing parts and selecting descriptors for fine-grained bird species categorization. Pattern Recognit. 76, 704–714 (2018)

    Article  Google Scholar 

  15. Zheng, H., Fu, J., Mei, T., et al.: Learning multi-attention convolutional neural network for fine-grained image recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5209–5217 (2017)

    Google Scholar 

  16. Zhang, N., Donahue, J., Girshick, R., Darrell, T.: Part-Based R-CNNs for Fine-Grained Category Detection. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_54

    Chapter  Google Scholar 

  17. Yili, Z.: Fine-grained Recognition of Yunnan Wild Bird Images Based on Deep Learning. Yunnan University, Kunming Yunnan (2018)

    Google Scholar 

  18. Xin-ye, L., Guang-bi, W.: Fine-grained bird recognition based on convolution neural network semantic detection. Sci. Technol. Eng. 18(10), 240–244 (2018)

    Google Scholar 

  19. Yuchen, W.: Fine-grained Bird Recognition Based on Deep Learning Beijing Forestry University, Beijing (2018)

    Google Scholar 

  20. Gai, K., Qiu, M., Zhao, H.: Security-aware efficient mass distributed storage approach for cloud systems in big data. In: 2016 IEEE 2nd international conference on big data security on cloud (BigDataSecurity). In: IEEE International Conference on High Performance and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS). IEEE, pp. 140–145 (2016)

    Google Scholar 

  21. Qiu, M., Jia, Z., Xue, C., et al.: Voltage assignment with guaranteed probability satisfying timing constraint for real-time multiproceesor DSP. J. VLSI Signal Proc. Syst. Signal Image Video Technol. 46, 55–73 (2007). https://doi.org/10.1007/s11265-006-0002-0

    Article  Google Scholar 

  22. Zhang, Q., Huang, T., Zhu, Y., et al.: A case study of sensor data collection and analysis in smart city: provenance in smart food supply chain. Int. J. Distrib. Sens. Netw. 9, (2013)

    Article  Google Scholar 

  23. Gao, Y., Xiang, X., Xiong, N., et al.: Human action monitoring for healthcare based on deep learning. IEEE Access 6, 52277–52285 (2018)

    Article  Google Scholar 

  24. Gao, Y., Xiong, N., Yu, W., et al.: Learning identity-aware face features across poses based on deep siamese networks. IEEE Access 7, 105789–105799 (2019)

    Article  Google Scholar 

  25. Huang, K., Zhang, Q., Zhou, C., et al.: An efficient intrusion detection approach for visual sensor networks based on traffic pattern learning. IEEE Tran. Syst. Man Cybern. Syst. 47, 2704–2713 (2017)

    Article  Google Scholar 

  26. Li, L-F., Wang, X., Hu, W-J., et al.: Deep Learning in Skin Disease Image Recognition: A Review. IEEE Access (2020)

    Google Scholar 

  27. Liu, M., Zhou, M., Zhang, T., et al.: Semi-supervised learning quantization algorithm with deep features for motor imagery EEG recognition in smart healthcare application. Appl. Soft Comput. 89, (2020)

    Article  Google Scholar 

  28. Mao, Z., Su, Y., Xu, G., et al.: Spatio-temporal deep learning method for ADHD fMRI classification. Inf. Sci. 499, 1–11 (2019)

    Article  Google Scholar 

  29. Shahzad, A., Lee, M., Lee, Y.-K., et al.: Real time MODBUS transmissions and cryptography security designs and enhancements of protocol sensitive information. Symmetry 7, 1176–1210 (2015)

    Article  MathSciNet  Google Scholar 

  30. Wu, C., Ju, B., Wu, Y., et al.: UAV autonomous target search based on deep reinforcement learning in complex disaster scene. IEEE Access 7, 117227–117245 (2019)

    Article  Google Scholar 

  31. Wu, C., Luo, C., Xiong, N., et al.: A greedy deep learning method for medical disease analysis. IEEE Access 6, 20021–20030 (2018)

    Article  Google Scholar 

  32. Wu, W., Xiong, N., Wu, C.: Improved clustering algorithm based on energy consumption in wireless sensor networks. Iet Netw. 6, 47–53 (2017)

    Article  Google Scholar 

  33. Yang, Y., Xiong, N., Chong, N.Y., et al.: A decentralized and adaptive flocking algorithm for autonomous mobile robots. In: 2008 The 3rd International Conference on Grid and Pervasive Computing-Workshops, pp. 262–268. IEEE (2008)

    Google Scholar 

  34. Yi, B., Shen, X., Liu, H., et al.: Deep matrix factorization with implicit feedback embedding for recommendation system. IEEE Trans. Ind. Inf. 15, 4591–4601 (2019)

    Article  Google Scholar 

  35. Zhang, Q., Zhou, C., Xiong, N., et al.: Multimodel-based incident prediction and risk assessment in dynamic cybersecurity protection for industrial control systems. IEEE Trans. Syst. Man Cybern. Syst. 46, 1429–1444 (2015)

    Article  Google Scholar 

  36. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2009)

    Article  Google Scholar 

  37. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 270–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_27

    Chapter  Google Scholar 

  38. Zhuang, F.Z., Luo, P., He, Q., Shi, Z.Z.: Survey on transfer learning research. Ruan Jian Xue Bao/J. Softw. 26(1), 26–39 (2015)

    MathSciNet  Google Scholar 

  39. Wang, J.: Transfer Learning Tutorial. (2019) In p https://tutorial.transferlearning.xyz/index

  40. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv preprint arXiv:1412.6980

  41. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    Google Scholar 

  42. Hinton, G., Srivastava, N., Swersky, K.: Neural networks for machine learning. Coursera Video Lect. 264, (2012)

    Google Scholar 

  43. Wah, C., Branson, S., Welinder, P., et al.: The caltech-ucsd birds-200–2011 dataset (2011)

    Google Scholar 

Download references

Acknowledgements

This work is supported the Fundamental Research Funds for the Central Universities (TD2014-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, P., Wu, G., Wu, X., Yi, X., Xiong, N. (2021). Birds Classification Based on Deep Transfer Learning. In: Qiu, M. (eds) Smart Computing and Communication. SmartCom 2020. Lecture Notes in Computer Science(), vol 12608. Springer, Cham. https://doi.org/10.1007/978-3-030-74717-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74717-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74716-9

  • Online ISBN: 978-3-030-74717-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics