Skip to main content

Similarity-Based Rough Sets with Annotation Using Deep Learning

  • Conference paper
  • First Online:
Intelligence Science III (ICIS 2021)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 623))

Included in the following conference series:

Abstract

In the authors’ previous research the possible usage of correlation clustering in rough set theory was investigated. Correlation clustering is based on a tolerance relation that represents the similarity among objects. Its result is a partition which can be treated as the system of base sets. However, singleton clusters represent very little information about the similarity. If the singleton clusters are discarded, then the approximation space received from the partition is partial. In this way, the approximation space focuses on the similarity (represented by a tolerance relation) itself and it is different from the covering type approximation space relying on the tolerance relation. In this paper, the authors examine how the partiality can be decreased by inserting the members of some singletons into base sets and how this annotation affects the approximations. This process can be performed by the user of system. However, in the case of a huge number of objects, the annotation can take a tremendous amount of time. This paper shows an alternative solution to the issue using neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aigner, M.: Enumeration via ballot numbers. Discret. Math. 308(12), 2544–2563 (2008). https://doi.org/10.1016/j.disc.2007.06.012. http://www.sciencedirect.com/science/article/pii/S0012365X07004542

  2. Aszalós, L., Mihálydeák, T.: Rough clustering generated by correlation clustering. In: Ciucci, D., Inuiguchi, M., Yao, Y., Ślęzak, D., Wang, G. (eds.) RSFDGrC 2013. LNCS (LNAI), vol. 8170, pp. 315–324. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41218-9_34

    Chapter  Google Scholar 

  3. Aszalós, L., Mihálydeák, T.: Rough classification based on correlation clustering. In: Miao, D., Pedrycz, W., Ślȩzak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS (LNAI), vol. 8818, pp. 399–410. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11740-9_37

    Chapter  MATH  Google Scholar 

  4. Aszalós, L., Mihálydeák, T.: Correlation clustering by contraction. In: 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 425–434. IEEE (2015)

    Google Scholar 

  5. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)

    Article  MathSciNet  Google Scholar 

  6. Becker, H.: A survey of correlation clustering. In: Advanced Topics in Computational Learning Theory, pp. 1–10 (2005)

    Google Scholar 

  7. Kádek, T., Mihálydeák, T.: Some fundamental laws of partial first-order logic based on set approximations. In: Cornelis, C., Kryszkiewicz, M., Ślęzak, D., Ruiz, E.M., Bello, R., Shang, L. (eds.) RSCTC 2014. LNCS (LNAI), vol. 8536, pp. 47–58. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08644-6_5

    Chapter  Google Scholar 

  8. Mihálydeák, T.: First-order logic based on set approximation: a partial three-valued approach. In: 2014 IEEE 44th International Symposium on Multiple-Valued Logic, pp. 132–137, May 2014. https://doi.org/10.1109/ISMVL.2014.31

  9. Mihálydeák, T.: Partial first-order logical semantics based on approximations of sets. Non-classical Modal and Predicate Logics, pp. 85–90 (2011)

    Google Scholar 

  10. Mihálydeák, T.: Partial first-order logic relying on optimistic, pessimistic and average partial membership functions. In: Pasi, G., Montero, J., Ciucci, D. (eds.) Proceedings of the 8th Conference of the European Society for Fuzzy Logic and Technology, pp. 334–339 (2013)

    Google Scholar 

  11. Mihálydeák, T.: Logic on similarity based rough sets. In: Nguyen, H.S., Ha, Q.-T., Li, T., Przybyła-Kasperek, M. (eds.) IJCRS 2018. LNCS (LNAI), vol. 11103, pp. 270–283. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99368-3_21

    Chapter  Google Scholar 

  12. Nagy, D., Mihálydeák, T., Aszalós, L.: Similarity based rough sets. In: Polkowski, L., et al. (eds.) IJCRS 2017. LNCS (LNAI), vol. 10314, pp. 94–107. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60840-2_7

    Chapter  MATH  Google Scholar 

  13. Nagy, D., Mihálydeák, T., Aszalós, L.: Similarity based rough sets with annotation. In: Nguyen, H.S., Ha, Q.-T., Li, T., Przybyła-Kasperek, M. (eds.) IJCRS 2018. LNCS (LNAI), vol. 11103, pp. 88–100. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99368-3_7

    Chapter  MATH  Google Scholar 

  14. Pawlak, Z.: Rough sets. Int. J. Parallel Prog. 11(5), 341–356 (1982)

    MATH  Google Scholar 

  15. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)

    Article  MathSciNet  Google Scholar 

  16. Pawlak, Z., et al.: Rough sets: theoretical aspects of reasoning about data. In: System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  17. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fund. Inform. 27(2), 245–253 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Zimek, A.: Correlation clustering. ACM SIGKDD Explor. Newsl. 11(1), 53–54 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the construction EFOP-3.6.3-VEKOP-16-2017-00002. The project was co-financed by the Hungarian Government and the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dávid Nagy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nagy, D., Mihálydeák, T., Kádek, T. (2021). Similarity-Based Rough Sets with Annotation Using Deep Learning. In: Shi, Z., Chakraborty, M., Kar, S. (eds) Intelligence Science III. ICIS 2021. IFIP Advances in Information and Communication Technology, vol 623. Springer, Cham. https://doi.org/10.1007/978-3-030-74826-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74826-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74825-8

  • Online ISBN: 978-3-030-74826-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics