Abstract
In the authors’ previous research the possible usage of correlation clustering in rough set theory was investigated. Correlation clustering is based on a tolerance relation that represents the similarity among objects. Its result is a partition which can be treated as the system of base sets. However, singleton clusters represent very little information about the similarity. If the singleton clusters are discarded, then the approximation space received from the partition is partial. In this way, the approximation space focuses on the similarity (represented by a tolerance relation) itself and it is different from the covering type approximation space relying on the tolerance relation. In this paper, the authors examine how the partiality can be decreased by inserting the members of some singletons into base sets and how this annotation affects the approximations. This process can be performed by the user of system. However, in the case of a huge number of objects, the annotation can take a tremendous amount of time. This paper shows an alternative solution to the issue using neural networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aigner, M.: Enumeration via ballot numbers. Discret. Math. 308(12), 2544–2563 (2008). https://doi.org/10.1016/j.disc.2007.06.012. http://www.sciencedirect.com/science/article/pii/S0012365X07004542
Aszalós, L., Mihálydeák, T.: Rough clustering generated by correlation clustering. In: Ciucci, D., Inuiguchi, M., Yao, Y., Ślęzak, D., Wang, G. (eds.) RSFDGrC 2013. LNCS (LNAI), vol. 8170, pp. 315–324. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41218-9_34
Aszalós, L., Mihálydeák, T.: Rough classification based on correlation clustering. In: Miao, D., Pedrycz, W., Ślȩzak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS (LNAI), vol. 8818, pp. 399–410. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11740-9_37
Aszalós, L., Mihálydeák, T.: Correlation clustering by contraction. In: 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 425–434. IEEE (2015)
Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)
Becker, H.: A survey of correlation clustering. In: Advanced Topics in Computational Learning Theory, pp. 1–10 (2005)
Kádek, T., Mihálydeák, T.: Some fundamental laws of partial first-order logic based on set approximations. In: Cornelis, C., Kryszkiewicz, M., Ślęzak, D., Ruiz, E.M., Bello, R., Shang, L. (eds.) RSCTC 2014. LNCS (LNAI), vol. 8536, pp. 47–58. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08644-6_5
Mihálydeák, T.: First-order logic based on set approximation: a partial three-valued approach. In: 2014 IEEE 44th International Symposium on Multiple-Valued Logic, pp. 132–137, May 2014. https://doi.org/10.1109/ISMVL.2014.31
Mihálydeák, T.: Partial first-order logical semantics based on approximations of sets. Non-classical Modal and Predicate Logics, pp. 85–90 (2011)
Mihálydeák, T.: Partial first-order logic relying on optimistic, pessimistic and average partial membership functions. In: Pasi, G., Montero, J., Ciucci, D. (eds.) Proceedings of the 8th Conference of the European Society for Fuzzy Logic and Technology, pp. 334–339 (2013)
Mihálydeák, T.: Logic on similarity based rough sets. In: Nguyen, H.S., Ha, Q.-T., Li, T., Przybyła-Kasperek, M. (eds.) IJCRS 2018. LNCS (LNAI), vol. 11103, pp. 270–283. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99368-3_21
Nagy, D., Mihálydeák, T., Aszalós, L.: Similarity based rough sets. In: Polkowski, L., et al. (eds.) IJCRS 2017. LNCS (LNAI), vol. 10314, pp. 94–107. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60840-2_7
Nagy, D., Mihálydeák, T., Aszalós, L.: Similarity based rough sets with annotation. In: Nguyen, H.S., Ha, Q.-T., Li, T., Przybyła-Kasperek, M. (eds.) IJCRS 2018. LNCS (LNAI), vol. 11103, pp. 88–100. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99368-3_7
Pawlak, Z.: Rough sets. Int. J. Parallel Prog. 11(5), 341–356 (1982)
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)
Pawlak, Z., et al.: Rough sets: theoretical aspects of reasoning about data. In: System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)
Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fund. Inform. 27(2), 245–253 (1996)
Zimek, A.: Correlation clustering. ACM SIGKDD Explor. Newsl. 11(1), 53–54 (2009)
Acknowledgement
This work was supported by the construction EFOP-3.6.3-VEKOP-16-2017-00002. The project was co-financed by the Hungarian Government and the European Social Fund.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Nagy, D., Mihálydeák, T., Kádek, T. (2021). Similarity-Based Rough Sets with Annotation Using Deep Learning. In: Shi, Z., Chakraborty, M., Kar, S. (eds) Intelligence Science III. ICIS 2021. IFIP Advances in Information and Communication Technology, vol 623. Springer, Cham. https://doi.org/10.1007/978-3-030-74826-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-74826-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-74825-8
Online ISBN: 978-3-030-74826-5
eBook Packages: Computer ScienceComputer Science (R0)