Skip to main content

Genetic Algorithm for Parameters Tuning of Two Stage Switching Controller for UAV Autonomous Formation Flight

  • Conference paper
  • First Online:
Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques (AUTOMATION 2021)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1390))

Included in the following conference series:

Abstract

The idea of adapting genetic algorithms for tuning of the formation flight multi stage control system parameters is presented. The results were conducted on the simulation model with the switching control of the leader-follower. The different configurations of the parameters selection were tested. The fitness function based on position error and with non constant coefficient parameters was introduced. The obtained results were compared with those of the classically tuned system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paul, T., Krogstad, R., Gravdahl, J.: Modelling of UAV formation flight using 3D potential field. In: Simulation Modelling Practice and Theory, pp. 1453–1462 (2008)

    Google Scholar 

  2. Jiang Z., Hui, C., Zefeng, Z.: Autonomous formation flight of UAVs: control algorithms and field experiments. In: Proceedings of the 35th Chinese Control Conference (CCC), Chengdu, pp. 7585–7591 (2016)

    Google Scholar 

  3. Hafez, A.T., Givigi, S.N., Schwartz, H.M., Yousefi, S., Iskandarani, M.: Real time tactic switching for multiple cooperative UAVs via model predictive control. In: Proceedings of the Annual IEEE Systems Conference (SysCon), Vancouver, pp. 432–438 (2015)

    Google Scholar 

  4. Sun, F., Han, S.: A flight path planning method based on improved artificial potential field. In: Proceedings of the 2016 International Conference on Computer, Information and Telecommunication Systems (CITS), Kunming, pp. 1–5 (2016)

    Google Scholar 

  5. Glazok, O.M.: A non-potential target function for controlling the UAVs group flight in presence of concave obstacles. In: Proceedings of the IEEE 5th International Conference Actual Problems of Unmanned Aerial Vehicles Developments, Kiev, pp. 238–241 (2019)

    Google Scholar 

  6. Zhang, J., Yan, J., Kong, X.: UAV formation flight cooperative tracking controller design. In: Proceedings of the 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, pp. 856–861 (2018)

    Google Scholar 

  7. Yu, Z., Qu, Y., Su, C.-Y., Zhang, Y.: Distributed fractional-order finite-time control for multiple unmanned aerial vehicles. In: Proceedings of the IEEE Conference on Control Technology and Applications (CCTA), Copenhagen, pp. 1058–1063 (2018)

    Google Scholar 

  8. Yun, B., Chen, B.M., Lum, K.Y., et al.: Design and implementation of a leader-follower cooperative control system for unmanned helicopters. J. Control Theory Appl. 8, 61–68 (2010)

    Article  Google Scholar 

  9. Yun, B., Chen, B.M., Lum, K.Y., Lee, T.H.: A leader-follower formation flight control scheme for UAV helicopters. In: Proceedings of the 2008 IEEE International Conference on Automation and Logistics, Qingdao, pp. 39–44 (2008)

    Google Scholar 

  10. de Souza Neto, A.M., Romero, R.A.F.: A decentralized approach to drone formation based on leader-follower technique. In: Proceedings of the 2019 Latin American Robotics Symposium (LARS), Rio Grande, pp. 358–362 (2019)

    Google Scholar 

  11. Wang, J., Jia, G., et al.: Cooperative task allocation for heterogeneous multi-UAV using multi-objective optimization algorithm. J. Central South Univ. 27, 432–448 (2020)

    Article  Google Scholar 

  12. Kolathaya, S., et al.: Trajectory based deep policy search for quadrupedal walking. In: Proceedings of the 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), New Delhi, pp. 1–6 (2019)

    Google Scholar 

  13. Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Piscataway, pp. 3389–3396 (2017)

    Google Scholar 

  14. Hwangbo, J., Sa, I., Siegwart, R., Hutter, M.: Control of a quadrotor with reinforcement learning. IEEE Robot. Autom. Lett. 2, 2096–2103 (2017)

    Article  Google Scholar 

  15. Liu, C.H., Chen, Z., Tang, J., Xu, J., Piao, C.: Energy-efficient UAV control for effective and fair communication coverage: a deep reinforcement learning approach. IEEE J. Sel. Areas Commun. 36(9), 2059–2070 (2018)

    Article  Google Scholar 

  16. Lin, J., Wang, L., Gao, F., Shen, S., Zhang, F.: Flying through a narrow gap using neural network: an end-to-end planning and control approach. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, pp. 3526–3533 (2019)

    Google Scholar 

  17. Faust, A., Palunko, I., Cruz, P., Fierro, R., Tapia, L.: Learning swing-free trajectories for UAVs with a suspended load. In: Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, pp. 4902–4909 (2013)

    Google Scholar 

  18. Sampedro, C., Bavle, H., Rodriguez-Ramos, A., de la Puente, P., Campoy, P.: Laser-based reactive navigation for multirotor aerial robots using deep reinforcement learning. In: Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, pp. 1024–1031 (2018)

    Google Scholar 

  19. Lin, Y., Wang, M., Zhou, X., Ding, G., Mao, S.: Dynamic spectrum interaction of UAV flight formation communication with priority: a deep reinforcement learning approach. IEEE Trans. Cogn. Commun. Netw. 6(3), 892–903 (2020)

    Article  Google Scholar 

  20. Izzo, D., Martens, M., Pan, B.: A survey on artificial intelligence trends in spacecraft guidance dynamics and control. Astrodynamics 3, 287–299 (2019)

    Article  Google Scholar 

  21. Duan, H., Luo, Q., Shi, Y., Ma, G.: Hybrid particle swarm optimization and genetic algorithm for Multi-UAV formation reconfiguration. IEEE Comput. Intell. Mag. 8(3), 16–22 (2013)

    Article  Google Scholar 

  22. Zhou, Y., et al.: Adaptive leader-follower formation control and obstacle avoidance via deep reinforcement learning. In: Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, pp. 4273–4280 (2019)

    Google Scholar 

  23. Ambroziak, L., Gosiewski, Z.: Two stage switching control for autonomous formation flight of unmanned aerial vehicles. Aerosp. Sci. Technol. 46, 221–226 (2015)

    Article  Google Scholar 

  24. Roskam, J.: Airplane Flight Dynamics and Automatic Flight Controls, Parts I & II. DARcorporation, Lawrence, Kansas (1998)

    Google Scholar 

  25. Stevens, B.L., Lewis, F.L.: Aircraft Control and Simulation, 2nd edn. Wiley, Hoboken (2003)

    Google Scholar 

  26. Ambroziak, L., Gosiewski, Z., Kondratiuk, M.: Aerodynamics characteristics identification of micro air vehicle. Trans. Inst. Aviat. 216, 17–29 (2011). (in Polish)

    Google Scholar 

  27. Beard, R., McLain, T.: Small Unmanned Aircraft: Theory and Practice. Princeton University Press, Princeton (2012)

    Google Scholar 

  28. Haupt, R.L.: Optimum population size and mutation rate for a simple real genetic algorithm that optimizes array factors. In: Proceedings of the IEEE Antennas and Propagation Society International Symposium, Salt Lake City, vol. 2, pp. 1034–1037 (2000)

    Google Scholar 

Download references

Acknowledgment

The work is supported with University Grants No. WZ/WM-IIM/1/2019 and WI/WM-IIM/6/2020, Faculty of Mechanical Engineering, Bialystok University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadiusz Bożko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bożko, A., Ambroziak, L., Pawluszewicz, E. (2021). Genetic Algorithm for Parameters Tuning of Two Stage Switching Controller for UAV Autonomous Formation Flight. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques. AUTOMATION 2021. Advances in Intelligent Systems and Computing, vol 1390. Springer, Cham. https://doi.org/10.1007/978-3-030-74893-7_16

Download citation

Publish with us

Policies and ethics