Skip to main content

Robustness Analysis of a Distributed MPC Control System of a Turbo-Generator Set of a Nuclear Plant – Disturbance Issues

  • Conference paper
  • First Online:
Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques (AUTOMATION 2021)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1390))

Included in the following conference series:

Abstract

Typically, there are two main control loops with PI controllers operating at each turbo-generator set. In this paper, a distributed model predictive controller with local quadratic model predictive controllers for the turbine generator is proposed instead of a set of classical PI controllers. The local quadratic predictive controllers utilize step-response models for the controlled system components. The parameters of these models are determined based on the proposed black-box models of the turbine and synchronous generator, which parameters are identified on-line with the recursive least-squares algorithm. A robustness analysis of the control system with respect to different disturbances is presented in the paper. There are various configurations considered, such as change in disturbance levels from the side of electrical and thermal systems, or changes in prediction horizons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lipo, T.: Analysis of Synchronous Machines. CRC Press, Boca Raton (2012)

    Google Scholar 

  2. Kundur, P.: Dynamic models for steam and hydro turbines in power system studies. IEEE Trans. Power Appar. Syst. PAS-92(6), 1904–1915 (1973)

    Google Scholar 

  3. Kundur, P.: Analysis of synchronous machines. In: Power System Stability and Control (1994)

    Google Scholar 

  4. Sokolski, P., Rutkowski, T., Duzinkiewicz, K.: The excitation controller with gain scheduling mechanism for synchronous generator control. In: 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 23–28 (2015)

    Google Scholar 

  5. Sokolski, P., Rutkowski, T., Duzinkiewicz, K.: The QDMC model predictive controller for the nuclear power plant steam turbine control. In: Trends in Advanced Intelligent Control, Optimization and Automation, KKA 2017. Advances in Intelligent Systems and Computing, vol. 577, pp. 241–250 (2017)

    Google Scholar 

  6. Sokólski, P., Kobylarz, A., Kulkowski, K., Duzinkiewicz, K., Rutkowski, T., Grochowski, M.: Advanced control structures of turbo generator system of nuclear power plant. Acta Energetica 3, 83–96 (2015)

    Article  Google Scholar 

  7. Grochowski, M., Rutkowski, T.: Supervised model predictive control of wastewater treatment plant. In: 21st International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 613–618 (2016)

    Google Scholar 

  8. Ciminski, A., Duzinkiewicz, K.: Optimized robust model predictive control - application to drinking water distribution systems hydraulics. IFAC Proc. Vol. 43(8), 395–400 (2010)

    Article  Google Scholar 

  9. Drewa, M., Brdys, M., Cimiñski, A.: Model predictive control of integrated quantity and quality in drinking water distribution systems. IFAC Proc. Vol. 40(5), 95–100 (2007)

    Article  Google Scholar 

  10. Puchalski, B., Duzinkiewicz, K., Rutkowski, T.: Multi-region fuzzy logic controller with local PID controllers for u-tube steam generator in nuclear power plant. Arch. Control Sci. 25(4), 429–444 (2015)

    Article  MathSciNet  Google Scholar 

  11. Czapliński, M., Sokólski, P., Duzinkiewicz, K., Piotrowski, R., Rutkowski, T.: Comparison of state feedback and PID control of pressurizer water level in nuclear power plant. Arch. Control Sci. 23(4), 381–398 (2013)

    Article  Google Scholar 

  12. Puchalski, B., Rutkowski, T., Tarnawski, J., Duzinkiewicz, K.: Comparison of tuning procedures based on evolutionary algorithm for multi-region fuzzy-logic PID controller for non-linear plant. In: 20th International Conference on Methods and Models in Automation and Robotics, pp. 897–903 (2015)

    Google Scholar 

  13. Camponogara, E., Jia, D., Krogh, B., Talukdar, S.: Distributed model predictive control. IEEE Control Syst. 22(1), 44–52 (2002)

    Article  Google Scholar 

  14. Cristofides, P., Scattolini, R., de la Pena, D., Jinfeng, L.: Distributed model predictive control: a tutorial review and future research directions. Comput. Chem. Eng. 51, 21–41 (2013)

    Article  Google Scholar 

  15. Camacho, E., Alba, C.: Model Predictive Control. Springer, London (2013)

    Google Scholar 

  16. Rossiter, J.: Model-Based Predictive Control: A Practical Approach (2013)

    Google Scholar 

  17. Tatjewski, P.: Advanced control of industrial processes (2007)

    Google Scholar 

  18. Carlos, E., Morshedi, A.: Quadratic programming solution of dynamic matrix control (QDMC). Chem. Eng. Commun. 46(1–3), 73–87 (1986)

    Google Scholar 

  19. Sokólski, P., Rutkowski, T., Duzinkiewicz, K.: The distributed model predictive controller for the nuclear power plant turbo-generator set. In: Trends in Advanced Intelligent Control, Optimization and Automation, KKA 2017. Advances in Intelligent Systems and Computing, vol. 577, pp. 682–687 (2017)

    Google Scholar 

  20. Afonso, R., Galvão, R.: Infeasibility handling in constrained MPC. In: Frontiers of Model Predictive Control, pp. 47–64 (2012)

    Google Scholar 

  21. Maciejowski, J.M.: Predictive Control: With Constraints (2002)

    Google Scholar 

  22. Hakvoort, R.: System identification for robust process control: nominal models and error bounds. Technische Universitet Delft (1994)

    Google Scholar 

  23. Sokolski, P.: Implementation of robust estimation methods for regulatory purposes predictive MPC type. Innov. Solut. Autom. Area 22(1), 44–52 (2011)

    Google Scholar 

  24. Imieliński, A.: Mathematical model of synchronous generator for full-scope simulator. Gdañsk University of Technology, Faculty of Electrical and Control Engineering (1987, unpublished)

    Google Scholar 

  25. Perycz, S., Próchnicki, W.: The mathematical model of a nuclear power plant VVER block steam turbine allowing to study transient processes with \(w=var\). Gdañsk University of Technology, Faculty of Electrical and Control Engineering (1989, unpublished)

    Google Scholar 

  26. Puchalski, B., Rutkowski, T., Duzinkiewicz, K.: Multinodal PWR reactor model-methodology proposition for power distribution coefficients calculation. In: 21st International Conference on Methods and Models in Automation and Robotics, pp. 385–390 (2016)

    Google Scholar 

  27. Kulkowski, K., Kobylarz, A., Grochowski, M., Duzinkiewicz, K.: Dynamic model of nuclear power plant steam turbine. Arch. Control Sci. 25(1), 65–86 (2015)

    Article  Google Scholar 

  28. Kulkowski, K., Grochowski, M., Duzinkiewicz, K., Kobylarz, A.: Nuclear power plant steam turbine - modeling for model based control purposes. Appl. Math. Model. 48, 491–515 (2017)

    Article  Google Scholar 

  29. Juszczuk, D., Tarnawski, J., Karla, T., Duzinkiewicz, K.: Real-time basic principles nuclear reactor simulator based on client-server network architecture with WebBrowser as user interface. Adv. Intell. Syst. Comput. 577, 344–353 (2017)

    Google Scholar 

  30. Tarnawski, J., Karla, T.: Real-time simulation in non real-time environment. In: 21st International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 577–582 (2016)

    Google Scholar 

  31. Karla, T., Tarnawski, J., Duzinkiewicz, K.: Cross-platform real-time nuclear reactor basic principle simulator. In: 20th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 1074–1079 (2015)

    Google Scholar 

  32. Loo, C., Vanfretti, L., Liceaga-Castro, E., Acha, E.E.: Synchronous generators modeling and control using the framework of individual channel analysis and design: part 1. Int. J. Emerg. Electr. Power Syst. 8(5), 1–28 (2007)

    Google Scholar 

  33. Sokolski, P., Rutkowski, T., Duzinkiewicz, K.: Simplified, multiregional fuzzy model of a nuclear power plant steam turbine. In: 21st International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 379–384 (2016)

    Google Scholar 

  34. Power System Dynamic Performance Committee: Dynamic models for turbine–governors in power system studies. IEEE Power & Energy Society (2013)

    Google Scholar 

  35. Nebeluk, M.R.: Tuning of multivariable model predictive control for industrial tasks. Model Predictive Control: Algorithms and Applications, 3 January 2021

    Google Scholar 

  36. Giernacki, W., Horla, D., Báča, T., Saska, M.: Real-time model-free minimum-seeking autotuning method for unmanned aerial vehicle controllers based on Fibonacci-search algorithm. Sensors 19, 312 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sokólski, P., Rutkowski, T.A., Ceran, B., Horla, D. (2021). Robustness Analysis of a Distributed MPC Control System of a Turbo-Generator Set of a Nuclear Plant – Disturbance Issues. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques. AUTOMATION 2021. Advances in Intelligent Systems and Computing, vol 1390. Springer, Cham. https://doi.org/10.1007/978-3-030-74893-7_17

Download citation

Publish with us

Policies and ethics