Skip to main content

The Use of Multilayer ConvNets for the Purposes of Motor Imagery Classification

  • Conference paper
  • First Online:
Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques (AUTOMATION 2021)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1390))

Included in the following conference series:

  • 446 Accesses

Abstract

An electroencephalographic signal is characterized by high complexity and character, which changes dynamically over time. At the same time, it should be noted that EEG signals in the field of Motor Imagery are increasingly more often used by scientists, among others, to help people with disabilities. Decoding these signals is important from the perspective of modern solutions based on the brain-computer interface technology. It is possible to isolate both spatial, as well as temporal features from an EEG signal using a ConvNet. This research paper suggests combining numerous ConvNet – Convolutional Neural Network models in terms of the EEG signal. The suggested multilayer ConvNets indicate high performance coefficients on a test data set. The method advocated in this article achieves a degree of accuracy on a data set at a precision level of 74.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mashat, M.E.M., Lin, C.T., Zhang, D.: Effects of task complexity on motor imagery based brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 27(10), 2178–2185 (2019)

    Article  Google Scholar 

  2. Aldea, R., Fira, M.: Classifications of motor imagery tasks in brain computer interface using linear discriminant analysis. Int. J. Adv. Res. Artif. Intell. 3(7), 5–9 (2014)

    Article  Google Scholar 

  3. Vidaurre, C., Schlögl, A., Cabez, R., Scherer, R., Futtscheller, G.: Adaptive on-line classification for EEG-based brain computer interfaces with AAR parameters and band power estimates. Biomed. Tech. (Berlin) 50(11), 350–354 (2005)

    Article  Google Scholar 

  4. Kevric, J., Subasi, A.: Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed. Signal Process. Control 31, 398–406 (2017)

    Article  Google Scholar 

  5. Wang, Z., Yu, Y., Xu, M., et al.: Towards a hybrid BCI gaming paradigm based on motor imagery and SSVEP. Int. J. Hum. – Comput. Interact. 35(3), 97–205 (2019)

    Google Scholar 

  6. Athanasiou, A., Klados, M.A., Styliadis, C., Foroglou, N., Polyzoidis, K., Bamidis, P.D.: Study of the role of alpha and beta rhythms in functional motor networks. Neuroscience 378, 54–70 (2018). https://doi.org/10.1016/j.neuroscience.2016.05.044

    Article  Google Scholar 

  7. Courellis, H., Mullen, T., Poizner, H., Cauwenberghs, G., Iversen, J.R.: EEG-based quantification of cortical current density and dynamic causal connectivity generalized across subjects performing BCI-monitored cognitive tasks. Front. Neurosci. 11, 180 (2017). https://doi.org/10.3389/fnins.2017.00180

    Article  Google Scholar 

  8. Li, T., Xue, T., Wang, B., Zhang, J.: Decoding voluntary movement o f single hand based on analysis of brain connectivity by using EEG signals. Front. Hum. Neurosci. 12, 381 (2018). https://doi.org/10.3389/fnhum.2018.00381

    Article  Google Scholar 

  9. Pfurtscheller, G., Neuper, C., Birbaumer, N.: Human brain-computer interface (BCI). In: Riehle, A., Vaadia, E. (eds.) A Distributed System for Distributed Functions, pp. 367–401. Motor Cortex in Voluntary Movements (2005)

    Google Scholar 

  10. Sagee, G.S., Hema, S.: EEG feature extraction and classification in multiclass multiuser motor imagery brain computer interface using Bayesian Network and ANN. In: 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT). IEEE (2017)

    Google Scholar 

  11. Hanakawa, T., Immisch, I., Toma, K., Dimyan, M.A., Van Gelderen, P., Hallett, M.: Functional properties of brain areas associated with motor execution and imagery. J. Neurophysiol. 89, 989–1002 (2003). https://doi.org/10.1152/jn.00132.2002

    Article  Google Scholar 

  12. Schirrmeister, R.T., Springenberg, J.T., Fiederer, L.D.J., Glasstetter, M., Eggensperger, K., Tangermann, M., Ball, T.: Deep learning with convolutional and neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38, 5391–5420 (2017). https://doi.org/10.1002/hbm.23730

    Article  Google Scholar 

  13. Al-Qaysi, Z.T., Zaidan, B.B., Zaidan, A.A., et al.: Review of the EEG-based wheelchair control system: consistent taxonomy, open challenges and recommendations. Comput. Methods Biomed Programs 164, 221–237 (2018)

    Article  Google Scholar 

  14. Sitaram, R., Zhang, H., Guan, C., et al.: Time classification of multichannel near-infrared spectroscopy signals for motor images for brain-computer interface development. Neuroimage 34(4), 1416–1427 (2007)

    Article  Google Scholar 

  15. Vourvopoulos, A., Badia, S.B.I., Liarokapis, F.: EEG correlates of video game experience and user profile in motor-imagery-based brain – computer interaction. Vis. Comput. 33(4), 533–546 (2017)

    Article  Google Scholar 

  16. Guler, N., Ubeyli, E., Guler, I.: Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl. 29(3), 506–514 (2005). https://doi.org/10.1016/j.eswa.2005.04.011. ISSN 09574174

  17. Amin, H.U., Malik, A.S., Ahmad, R.F., et al.: Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Astralas. Phys. Eng. Sci. Med. 38(1), 139–149 (2015)

    Article  Google Scholar 

  18. Cecotti, H., Graser, A.: Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 433–445 (2011). https://doi.org/10.1109/TPAMI.2010.125. ISSN 01628828

  19. Subasi, A., Gursoy, M.I.: EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 37(12), 8659–8666 (2010)

    Article  Google Scholar 

  20. Paszkiel, S., Szpulak, P.: Methods of acquisition, archiving and biomedical data analysis of brain functioning. In: Hunek, W., Paszkiel, S. (eds.) Biomedical Engineering and Neuroscience, Proceedings of the 3rd International Scientific Conference on Brain-Computer Interfaces, BCI 2018, Opole, Poland, 13–14 March. Advances in Intelligent Systems and Computing, AISC, vol. 720, pp. 158–171. Springer (2018). https://doi.org/10.1007/978-3-319-75025-5_15

  21. Lu, S., Lu, Z., Zhang, Y.-D.: Pathological brain detection based on AlexNet and transfer learning. J. Comput. Sci. (2018). https://doi.org/10.1016/j.jocs.2018.11.008

  22. Paszkiel, S.: The use of facial expressions identified from the level of the EEG signal for controlling a mobile vehicle based on a State Machine. In: Automation 2020: Towards Industry of the Future. Advances in Intelligent Systems and Computing, pp. 227–238. Springer (2020). https://doi.org/10.1007/978-3-030-40971-5_21

  23. Paszkiel, S.: Using BCI in IoT implementation. In: Studies in Computational Intelligence, vol. 852, pp. 111–128. Springer, Switzerland (2020). https://doi.org/10.1007/978-3-030-30581-9_13

  24. Paszkiel, S.: Using neural networks for classification of the changes in the EEG signal based on facial expressions. In: Studies in Computational Intelligence, vol. 852, pp. 41–69. Springer, Switzerland (2020). https://doi.org/10.1007/978-3-030-30581-9_7

  25. Paszkiel, S.: Augmented reality of technological environment in correlation with brain computer interfaces for control processes. In: International Conference on Automation. Advances in Intelligent Systems and Computing, vol. 267, pp. 197–203. Springer, Switzerland (2014). https://doi.org/10.1007/978-3-319-05353-0_20

  26. Paszkiel, S., Hunek, W., Shylenko, A.: Project and simulation of a portable device for measuring bioelectrical signals from the brain for states consciousness verification with visualization on LEDs. In: International Conference Challenges in Automation, Robotics and Measurement Techniques (Automation). Advances in Intelligent Systems and Computing, vol. 440, pp. 25–39. Springer, Switzerland (2016). https://doi.org/10.1007/978-3-319-29357-8_3

  27. Paszkiel, S.: Analysis and classification of EEG signals for brain-computer interfaces introduction. In: Studies in Computational Intelligence, vol. 852, Springer, Switzerland (2020). https://doi.org/10.1007/978-3-030-30581-9_1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szczepan Paszkiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paszkiel, S., Dobrakowski, P. (2021). The Use of Multilayer ConvNets for the Purposes of Motor Imagery Classification. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques. AUTOMATION 2021. Advances in Intelligent Systems and Computing, vol 1390. Springer, Cham. https://doi.org/10.1007/978-3-030-74893-7_2

Download citation

Publish with us

Policies and ethics