Skip to main content

Application of the Polynomial Maximization Method for Estimation Parameters in the Polynomial Regression with Non-Gaussian Residuals

  • Conference paper
  • First Online:
Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques (AUTOMATION 2021)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1390))

Included in the following conference series:

Abstract

This paper considers the application of the polynomial maximization method to find estimates of the parameters of polynomial regression. It is shown that this method can be effective for the case when the distribution of the random component of the regression models differs significantly from the Gaussian distribution. This approach is adaptive and is based on the analysis of higher-order statistics of regression residuals. Analytical expressions that allow finding estimates and analyzing their uncertainty are obtained. Cases of asymmetry and symmetry of the distribution of regression errors are considered. It is shown that the variance of estimates of the polynomial maximization method can be significantly less than the variance of the estimates of the least squares method, which is a special case. The increase in accuracy depends on the values of the cumulant coefficients of higher orders of random errors of the regression model. The results of statistical modeling by the Monte Carlo method confirm the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson, N.L.: Systems of frequency curves generated by methods of translation. Biometrika 36, 149–176 (1949)

    Article  MathSciNet  Google Scholar 

  2. Box, G.E.P., Cox, D.R.: An analysis of transformations. J. Roy. Stat. Soc. Ser. B 26, 211–246 (1964)

    MATH  Google Scholar 

  3. Huber, P.J., Ronchetti, E.M.: Robust Statistics. Wiley, Hoboken (2009). https://doi.org/10.1002/9780470434697

    Book  MATH  Google Scholar 

  4. Stone, C.J.: Adaptive maximum likelihood estimators of a location parameter. Ann. Stat. 3(2), 267–284 (1975). https://doi.org/10.1214/aos/1176343056

    Article  MathSciNet  MATH  Google Scholar 

  5. Schechtman, E., Schechtman, G.: Estimating the parameters in regression with uniformly distributed errors. J. Stat. Comput. Simul. 26(3–4), 269–281 (1986). https://doi.org/10.1080/00949658608810965

    Article  MathSciNet  MATH  Google Scholar 

  6. Zeckhauser, R., Thompson, M.: Linear regression with non-normal error terms. Rev. Econ. Stat. 52, 280–286 (1970)

    Article  Google Scholar 

  7. Islam, M.Q., Tiku, M.L., Yildirim, F.: Nonnormal regression. I. Skew distributions. Commun. Stat. Theory Methods 30(6), 993–1020 (2001). https://doi.org/10.1081/STA-100104347

  8. Tiku, M.L., Islam, M.Q., Selçuk, A.S.: Nonnormal regression. II. Symmetric distributions. Commun. Stat. Theory Methods 30(6), 1021–1045 (2001). https://doi.org/10.1081/STA-100104348

  9. Van Montfort, K., Mooijaart, A., de Leeuw, J.: Regression with errors in variables: estimators based on third order moments. Stat. Neerl. 41(4), 223–237 (1987)

    Article  MathSciNet  Google Scholar 

  10. Dagenais, M.G., Dagenais, D.L.: Higher moment estimators for linear regression models with errors in the variables. J. Econ. 76(1–2), 193–221 (1997). https://doi.org/10.1016/0304-4076(95)01789-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Cragg, J.G.: Using higher moments to estimate the simple errors-in-variables model. RAND J. Econ. 28, S71 (1997). https://doi.org/10.2307/3087456

    Article  Google Scholar 

  12. Gillard, J.: Method of moments estimation in linear regression with errors in both variables. Commun. Stat. Theory Methods 43(15), 3208–3222 (2014). https://doi.org/10.1080/03610926.2012.698785

    Article  MathSciNet  MATH  Google Scholar 

  13. Giacalone, M.: A combined method based on kurtosis indexes for estimating p in non-linear L p-norm regression. Sustain. Futures 2, 100008 (2020). https://doi.org/10.1016/j.sftr.2020.100008

    Article  Google Scholar 

  14. Kunchenko, Y.: Polynomial Parameter Estimations of Close to Gaussian Random Variables. Shaker Verlag, Aachen (2002)

    Google Scholar 

  15. Zabolotnii, S.W., Martynenko, S.S., Salypa, S.V.: Method of verification of hypothesis about mean value on a basis of expansion in a space with generating element. Radioelectron. Commun. Syst. 61, 222–229 (2018). https://doi.org/10.3103/S0735272718050060

    Article  Google Scholar 

  16. Chertov, O., Slipets, T.: Epileptic seizures diagnose using Kunchenko’s polynomials template matching. In: Fontes, M., Günther, M., Marheineke, N. (eds.) Progress in Industrial Mathematics at ECMI 2012, pp. 245–248. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05365-3_33.

  17. Zabolotnii, S.V., Warsza, Z.L.: Semi-parametric polynomial method for retrospective estimation of the change-point of parameters of non-Gaussian sequences. In: Advanced Mathematical and Computational Tools in Metrology and Testing X, pp. 400–408 (2015).https://doi.org/10.1142/9789814678629_0048

  18. Zabolotnii, S.W., Warsza, Z.L.: Semi-parametric polynomial modification of CUSUM algorithms for change-point detection of non-Gaussian sequences. In: Electronic Proceedings of XXI IMEKO World Congress “Measurement in Research and Industry”, Prague Czech Republic, September 2015, vol. 30, pp. 2088–2091 (2015)

    Google Scholar 

  19. Zabolotnii, S., Warsza, Z., Tkachenko, O.: Polynomial estimation of linear regression parameters for the asymmetric pdf of errors. Advances in Intelligent Systems and Computing, vol. 743, pp. 758–772. Springer (2018). https://doi.org/10.1007/978-3-319-77179-3_75

  20. Zabolotnii, S.W., Warsza, Z.L., Tkachenko, O.: Estimation of linear regression parameters of symmetric non-Gaussian errors by polynomial maximization method. Advances in Intelligent Systems and Computing, vol. 920, pp. 636–649. Springer (2020). https://doi.org/10.1007/978-3-030-13273-6_59

  21. Cook, R.D., Weisberg, S.: Residuals and Influence in Regression. Monographs on Statistics and Applied Probability (1982). https://doi.org/10.2307/1269506

  22. Jarque, C.M., Bera, A.K.: A tests of observations and regression residuals. Int. Stat. Rev. 55, 163–172 (1987)

    Article  MathSciNet  Google Scholar 

  23. Quinlan, J.R.: Combining instance-based and model-based learning. In: Proceedings of the Tenth International Conference on Machine Learning, pp. 236–243 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serhii Zabolotnii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zabolotnii, S., Tkachenko, O., Warsza, Z.L. (2021). Application of the Polynomial Maximization Method for Estimation Parameters in the Polynomial Regression with Non-Gaussian Residuals. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques. AUTOMATION 2021. Advances in Intelligent Systems and Computing, vol 1390. Springer, Cham. https://doi.org/10.1007/978-3-030-74893-7_36

Download citation

Publish with us

Policies and ethics