Skip to main content

Application of the Reference Sliding Variable Profile as an Extension of the Time-Varying Sliding Surface QSM Control

  • Conference paper
  • First Online:
Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques (AUTOMATION 2021)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1390))

Included in the following conference series:

  • 525 Accesses

Abstract

For the last decades the sliding mode control has been considered as one of the most promising continuous-time control methods. The idea assumes switching the structure of the controller, so that the representative point of the system approaches and remains on a predesigned sliding surface. Consequently, in the sliding phase the system becomes insensitive to any external disturbances and model uncertainties. To benefit from these features in the reaching phase as well, time-varying sliding surfaces may be applied. Unique properties of the sliding mode control, have also been widely adapted for discretized systems. However, as in the discrete-time only the quasi-sliding mode exists, the time-varying sliding surfaces have not been popularized for this case. For the quasi-sliding mode design, the reaching law approach has gathered more followers. This paper combines those two control design methods and presents the application of the reference sliding variable profile as an extension of the time-varying sliding surface idea for discrete-time sliding mode control. The study proves, that the application of the time-varying sliding surface guarantees robustness to external disturbances and modelling uncertainties through the whole regulation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Emelyanov, S.V.: Variable-Structure Control Systems. Nauka, Moscow (1967). (in Russian)

    MATH  Google Scholar 

  2. Itkis, U.: Control Systems of Variable Structures. Wiley, New York (1976)

    Google Scholar 

  3. Utkin, V.I.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977)

    Article  MathSciNet  Google Scholar 

  4. Draženović, B.: The invariance conditions in variable structure systems. Automatica 5(3), 287–295 (1969)

    Article  MathSciNet  Google Scholar 

  5. Hung, J.Y., Gao, W.B., Hung, J.C.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40(1), 2–22 (1993)

    Article  Google Scholar 

  6. Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory and Applications. Taylor & Francis, London (1998)

    Book  Google Scholar 

  7. Choi, S.B., Cheong, C.C., Park, D.W.: Moving switching surfaces for robust control of second-order variable structure systems. Int. J. Control 58(1), 229–245 (1993)

    Article  MathSciNet  Google Scholar 

  8. Choi, S.B., Park, D.W., Jayasuriya, S.: A time-varying sliding surface for fast and robust tracking control of second-order uncertain systems. Automatica 30(5), 899–904 (1994)

    Article  MathSciNet  Google Scholar 

  9. Bartoszewicz, A.: A Comment on ‘A time-varying sliding surface for fast and robust tracking control of second-order uncertain systems.’ Automatica 31(12), 1893–1895 (1995)

    Article  MathSciNet  Google Scholar 

  10. Bartoszewicz, A.: Time-varying sliding modes for second-order systems. IEE Proc. Control Theory Appl. 143(5), 455–462 (1996)

    Google Scholar 

  11. Bartoszewicz, A., Nowacka-Leverton, A.: SMC without the reaching phase – the switching plane design for the third-order system. IET Control Theory Appl. 1(5), 1461–1470 (2007)

    Article  Google Scholar 

  12. Bartoszewicz, A., Nowacka-Leverton, A.: Time-Varying Sliding Modes for Second and Third Order Systems. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  13. Bartoszewicz, A., Nowacka, A.: Reaching phase elimination in variable structure control of the third order system with state constraints. Kybernetika 42(1), 111–126 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Park, D.W., Choi, S.B.: Moving sliding surfaces for high-order variable structure systems. Int. J. Control 72(11), 960–970 (1999)

    Article  MathSciNet  Google Scholar 

  15. Milosavljević, D.: General conditions for the existence of a quasi-sliding mode on the switching hyperplane in discrete variable structure systems. Autom. Remote Control 46(3), 307–314 (1985)

    MATH  Google Scholar 

  16. Sarpturk, S.Z., Istefanopulos, Y., Kaynak, O.: On the stability of discrete-time sliding mode control systems. IEEE Trans. Autom. Control 22(10), 930–932 (1987)

    Article  Google Scholar 

  17. Utkin, V.I., Drakunov, S.V.: On discrete-time sliding modes. IFAC Proc. Vol. 22(3), 273–278 (1989)

    Article  Google Scholar 

  18. Kanai, Y., Mori, Y.: Discrete time Sliding Mode Control with time varying switching hyper plane. In: 2008 SICE Annual Conference, Tokyo, pp. 2349–2352 (2008)

    Google Scholar 

  19. Hu, Q., Du, C., Xie, L., Wang, Y.: Discrete-time sliding mode control with time-varying surface for hard disk drives. IEEE Trans. Control Syst. Technol. 17(1), 175–183 (2009)

    Article  Google Scholar 

  20. Gao, W.B., Wang, Y., Homaifa, A.: Discrete-time variable structure control systems. IEEE Trans. Ind. Electron. 42(2), 117–122 (1995)

    Article  Google Scholar 

  21. Bartoszewicz, A.: Discrete-time quasi-sliding mode control strategies. IEEE Trans. Ind. Electron. 45(4), 633–637 (1998)

    Article  Google Scholar 

  22. Golo, G., Milosavljević, Č: Robust discrete-time chattering free sliding mode control. Syst. Control Lett. 41, 19–28 (2000)

    Article  MathSciNet  Google Scholar 

  23. Chakrabarty, S., Bandyopadhyay, B.: A generalized reaching law with different convergence rates. Automatica 63, 34–37 (2016)

    Article  MathSciNet  Google Scholar 

  24. Bartoszewicz, A., Adamiak, K.: Model reference discrete-time variable structure control. Int. J. Adapt. Control Signal Process. 32(10), 1440–1452 (2018)

    Article  MathSciNet  Google Scholar 

  25. Bartoszewicz, A., Adamiak, K.: Discrete time sliding mode control with a desired switching variable generator. IEEE Trans. Autom. Control 65(4), 1807–1814 (2020)

    Article  MathSciNet  Google Scholar 

  26. Leśniewski, P.: Reference trajectory based SMC of DCDC buck converter. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds.) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol. 1196, pp. 161–170. Springer, Cham (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Adamiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adamiak, K. (2021). Application of the Reference Sliding Variable Profile as an Extension of the Time-Varying Sliding Surface QSM Control. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques. AUTOMATION 2021. Advances in Intelligent Systems and Computing, vol 1390. Springer, Cham. https://doi.org/10.1007/978-3-030-74893-7_4

Download citation

Publish with us

Policies and ethics