Abstract
This paper describes neural models developed for the First Workshop on Scope Detection of the Peer Review Articles shared task collocated with PAKDD 2021. The aim of the task is to identify topics or category of scientific abstracts. We investigate the use of several fine-tuned language representation models pretrained on different large-scale corpora. In addition, we conduct experiments on combining BERT-based models and document topic vectors for scientific text classification. The topic vectors are obtained using LDA topic modeling. The topic-informed soft voting ensemble of neural networks achieved F1-score of 93.82%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The source code for our models is available at: https://github.com/SDPRA-2021/shared-task/tree/main/utmn.
References
Aluru, S.S., et al.: Deep learning models for multilingual hate speech detection. arXiv preprint arXiv:2004.06465 (2020)
Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific text. arXiv preprint arXiv:1903.10676 (2019)
Bidulya, Y.: An Approach to the development of software for effective search of scientific articles. In: 2018 3rd Russian-Pacific Conference on Computer Technology and Applications (RPC), pp. 1–4 (2018). https://doi.org/10.1109/rpc.2018.8482164
Chandrasekaran, M.K., et al.: Overview and insights from the shared tasks at scholarly document processing 2020: CL-SciSumm, LaySumm and LongSumm. In: Proceedings of the First Workshop on Scholarly Document Processing, pp. 214–224 (2020)
Chollet, F., et al.: Keras: the python deep learning library. Astrophysics Source Code Library, ascl: 1806.022 (2018)
Cox, J., Harper, C.A., de Waard, A.: Optimized machine learning methods predict discourse segment type in biological research articles. In: González-Beltrán, A., Osborne, F., Peroni, S., Vahdati, S. (eds.) SAVE-SD 2017-2018. LNCS, vol. 10959, pp. 95–109. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01379-0_7
Devlin, J., et al.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Fisas, B., Ronzano, F., Saggion, H.: A multi-layered annotated corpus of scientific papers. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), pp. 3081–3088 (2016)
Jaidka, K., et al.: Insights from CL-SciSumm 2016: the faceted scientific document summarization shared task. Int. J. Digit. Libr. 192, 163–171 (2018)
Gábor, K., et al.: Semeval-2018 task 7: semantic relation extraction and classification in scientific papers. In: Proceedings of The 12th International Workshop on Semantic Evaluation, pp. 679–688 (2018)
Gordon, J., et al.: Modeling concept dependencies in a scientific corpus. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 866–875 (2016)
Ghosal, T., Verma, R., Ekbal, A., Saha, S., Bhattacharyya, P.: An empirical study of importance of different sections in research articles towards ascertaining their appropriateness to a Journal. In: Ishita, E., Pang, N.L.S., Zhou, L. (eds.) ICADL 2020. LNCS, vol. 12504, pp. 407–415. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64452-9_38
Gipp, B., Meuschke, N., Breitinger, C.: Citation based plagiarism detection: practicability on a large scale scientific corpus. J. Am. Soc. Inf. Sci. 658, 1527–1540 (2014). https://doi.org/10.1002/asi.23228
Glazkova, A.: A comparison of synthetic oversampling methods for multi-class text classification. arXiv preprint arXiv:2008.04636 (2020)
Glazkova, A., Glazkov, M., Trifonov, T.: g2tmn at Constraint@AAAI2021: exploiting CT-BERT and ensembling learning for COVID-19 fake news detection. In: Proceedings of the First Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situation (CONSTRAINT). Springer (2021, Forthcoming)
Gu, Y., et al.: Domain-specific language model pretraining for biomedical natural language processing. arXiv preprint arXiv:2007.15779 (2020)
Lemaître, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 181, 559–563 (2017)
Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)
Lo, K., et al.: S2ORC: the semantic scholar open research corpus. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4969–4983 (2020)
Loper, E., Bird, S.: NLTK: the natural language toolkit. In: Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and Computational Linguistics, pp. 63–70 (2002)
Loshchilov I., Hutter F.: Fixing weight decay regularization in Adam. arXiv preprint arXiv:1711.05101 (2017)
Müller, M., Salathé, M., Kummervold, P.E.: Covid-Twitter-BERT: a natural language processing model to analyse covid-19 content on twitter. arXiv preprint arXiv:2005.07503 (2020)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8026–8037 (2019)
Peinelt N., Nguyen D., Liakata M.: tBERT: Topic models and BERT joining forces for semantic similarity detection. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7047–7055 (2020) https://doi.org/10.18653/v1/2020.acl-main.630
Radev, D.R., et al.: The ACL anthology network corpus. Lang. Resour. Eval. 474, 919–944 (2013). https://doi.org/10.3115/1699750.1699759
Reddy, S., Saini, N.: Overview and insights from scope detection of the peer review articles shared tasks 2021. In: Proceedings of The First Workshop & Shared Task on Scope Detection of the Peer Review Articles (SDPRA 2021) (2021, Forthcoming)
Reddy S., Saini N.: SDPRA 2021 shared task data. Mendeley Data V1. https://doi.org/10.17632/njb74czv49.1
Rehurek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks (2010)
Romanov, A., Lomotin, K., Kozlova, E.: Application of natural language processing algorithms to the task of automatic classification of russian scientific texts. Data Sci. J. 181 (2019). https://doi.org/10.5334/dsj-2019-037
Saggion, H., et al.: A multi-level annotated corpus of scientific papers for scientific document summarization and cross-document relation discovery. In: Proceedings of The 12th Language Resources and Evaluation Conference, pp. 6672–6679 (2020)
Soares F., Moreira V., Becker K.: A large parallel corpus of full-text scientific articles. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) (2018)
Solovyev, V., Ivanov, V., Solnyshkina, M.: Assessment of reading difficulty levels in Russian academic texts: approaches and metrics. J. Intell. Fuzzy Syst. 345, 3049–3058 (2018). https://doi.org/10.3233/jifs-169489
Sun, Z., et al.: MobileBERT: a compact task-agnostic BERT for resource-limited devices. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 2158–2170 (2020)
Teich, E.: Exploring a corpus of scientific texts using data mining. In: Corpus-Linguistic Applications, pp. 233–247 (2010)
Veyseh, A.P.B., et al.: Acronym identification and disambiguation shared tasks for scientific document understanding. arXiv preprint arXiv:2012.11760 (2020)
Vincze, V., et al.: The BioScope corpus: biomedical texts annotated for uncertainty, negation and their scopes. BMC Bioinf. 911, 1–9 (2008)
Weissenbacher, D., et al.: SemEval-2019 task 12: toponym resolution in scientific papers. In: Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 907–916 (2019)
Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–45 (2020) https://doi.org/10.18653/v1/2020.emnlp-demos.6
Xia, P., Wu, S., Van Durme, B.: Which* BERT? A survey organizing contextualized encoders. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 7516–7533 (2020)
Yasunaga, M., et al.: ScisummNet: a large annotated corpus and content-impact models for scientific paper summarization with citation networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 331, pp. 7386–7393 (2019)
Zakharova, I., et al.: Diagnostics of professional competence of IT students based on digital footprint data. Inf. Educ. 4, 4–11 (2020). https://doi.org/10.32517/0234-0453-2020-35-4-4-11
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Glazkova, A. (2021). Identifying Topics of Scientific Articles with BERT-Based Approaches and Topic Modeling. In: Gupta, M., Ramakrishnan, G. (eds) Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12705. Springer, Cham. https://doi.org/10.1007/978-3-030-75015-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-75015-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-75014-5
Online ISBN: 978-3-030-75015-2
eBook Packages: Computer ScienceComputer Science (R0)