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Abstract. Digitization of scanned Piping and Instrumentation diagrams
(P&ID), widely used in manufacturing or mechanical industries such as
oil and gas over several decades, has become a critical bottleneck in dy-
namic inventory management and creation of smart P&IDs that are com-
patible with the latest CAD tools. Historically, P&ID sheets have been
manually generated at the design stage, before being scanned and stored
as PDFs. Current digitization initiatives involve manual processing and
are consequently very time consuming, labour intensive and error-prone.
Thanks to advances in image processing, machine and deep learning tech-
niques there is an emerging body of work on P&ID digitization. How-
ever, existing solutions face several challenges owing to the variation in
the scale, size and noise in the P&IDs, the sheer complexity and crowd-
edness within the drawings, domain knowledge required to interpret the
drawings and the very minute visual differences among symbols. This
motivates our current solution called Digitize-PID which comprises of
an end-to-end pipeline for detection of core components from P&IDs
like pipes, symbols and textual information, followed by their associ-
ation with each other and eventually, the validation and correction of
output data based on inherent domain knowledge. A novel and efficient
kernel-based line detection and a two-step method for detection of com-
plex symbols based on a fine-grained deep recognition technique is pre-
sented in the paper. In addition, we have created an annotated synthetic
dataset, Dataset-P&ID, of 500 P&IDs by incorporating different types of
noise and complex symbols which is made available for public use (cur-
rently there exists no public P&ID dataset). We evaluate our proposed
method on this synthetic dataset and a real-world anonymized private
dataset of 12 P&ID sheets. Results show that Digitize-PID outperforms
the existing state-of-the-art for P&ID digitization.

1 Introduction
A Piping and Instrumentation Diagram (P&ID) is a standardized schematic
illustration used in the process engineering industry to record mechanical equip-
ment, piping, instrumentation and control devices employed in the physical im-
plementation of a process. P&IDs are created at the design stage of the process,
stored in an image or PDF format and play an important role in the mainte-
nance and modification stage of the physical process flow. Over the years, there
are millions of PID sheets that have been manually generated, scanned and
stored as images. The valuable information trapped in these images needs to be
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unlocked and integrated with modern smart P&ID systems. This digitization is
necessary to facilitate easy reuse of data and design, automate mundane tasks,
maintain inventory, reduce time, increase efficiency and productivity. Currently,
P&ID sheets are manually processed by engineers which is a very burdensome,
time consuming and error-prone task. There is a very high cognitive load in-
volved in manual digitization due to the minor variations in symbols, scale, size
and noise within the sheets, in addition to the crowdedness of text, symbols and
line. There is also significant domain knowledge involved in determining line
changes and associating text with lines and symbols. Extraction and analysis of
textual information, pipelines, and symbols as graphic objects and shapes are
the key tasks for interpreting P&ID sheets. We exploit the recent advances in
deep learning/machine learning for these tasks.

Several approaches have been proposed for digitizing P&ID sheets or similar
documents. This includes conversion of scanned engineering drawings into 3D
representation CAD files [10], symbol recognition [3] and classification [1], and
shape representation [17]. Ishii et al. [8] presented work towards reading hand
drawn piping and instrument diagram where lines, symbols and characters are
separated hierarchically from the vectorized representation. In another paper by
Gellaboina et al. [7], an iterative learning approach based on hopfield neural
networks was presented to detect symbols in P&ID sheets.

Over the last decade, researchers have applied dynamic programming, ma-
chine learning, deep learning and pattern recognition to automate the detection
of lines, text, shapes from PDFs and/or scanned images. Nazemi et al. [13]
presented a method for detecting and extracting mathematical expressions, al-
phanumeric symbols to generate MathML of the scanned documents. A thorough
review of prior methods and a general framework for the digitization of complex
engineering diagrams was proposed by Moreno-Garcia et al. [12]. Fu et al. [6] de-
scribed a visual recognition approach by leveraging CNNs for symbol recognition
and methods like multi-scale sliding window and connected component analysis
for automatic localization. A semi-automatic and heuristic based approach for
symbol localization is proposed by Elyan et al. [4] which utilizes machine learn-
ing models like Random Forests, Support Vector Machines (SVM), and CNNs.
Kang et al. [9] proposed a two-fold method comprising of extraction of relevant
components from P&IDs followed by a recognition step that compares the input
sheet at various angles with the objects registered in the database. Very recently,
Rahul et al. [14] proposed a novel end-to-end approach based on a combination
of low-level vision techniques and deep learning networks like CTPN [15] and
FCN [11] for digital interpretation of P&ID sheets by yielding the process flow in
a tree format. The shortcoming of approaches proposed in [14] is that it utilizes
a hough transform for detecting lines which is parameter-dependent and does
not perform well on noisy P&IDs. Moreover, it uses CTPN for text detection
which is not able to identify vertical text components present in P&IDs.

Although significant efforts have been made to improve the performance of
automatic methods for conversion of P&IDs into digital drawing, but perfect
automatic recognition is still not achievable [12]. To this end, we propose an
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Fig. 1: An overview of Digitize-PID which consists of 3 sequential modules with
their corresponding sub-modules: Detection, Comprehension and Reconciliation.

end-to-end pipeline called Digitize-PID which leverages computer-vision tech-
niques and deep learning methods to first detect various components of interest
such as lines, graphic symbols and textual information; followed by their aggre-
gation and association with each other; and finally, validation and correction of
the extracted output data based on domain rules. We describe a robust kernel-
based approach for line detection which works well even in noisy environments.
Additionally, a two-step process for detecting complex symbols having minute
differences in visual structure is presented which utilizes a deep learning based
network for symbol localization and fine-grained classification. We evaluate the
effectiveness of our proposed solution on a real-world dataset of 12 P&ID sheets
and show impressive results. Note that while 12 may seem like a small number,
each P&ID sheet is a very high resolution image with hundreds of visual and
textual components. Since, there exists no publicly available dataset for P&ID
sheets, we synthesize our own synthetic dataset named Dataset-P&ID1. We also
benchmark this dataset using Digitize-PID and make it publicly available for ac-
celerating community advances in this field. To summarize, our key contributions
in this paper are:

– We propose Digitize-PID, an end-to-end novel and robust pipeline for digi-
tizing P&ID sheets by leveraging computer vision and deep learning.

– Digitize-PID combines novel image-processing techniques for hard low-level
vision problems such as line detection, dashed line detection, corner detection
and a deep learning pipeline for symbol detection and recognition.

– We create a synthetic dataset of P&ID sheets called Dataset-P&ID con-
sisting of 500 P&ID sheets with corresponding annotations for training and
evaluation purposes. The dataset is released online for public use.

1 https://drive.google.com/drive/u/1/folders/1gMm YKBZtXB3qUKUpI-LF1HE
MgzwfeR

https://drive.google.com/drive/u/1/folders/1gMm_YKBZtXB3qUKUpI-LF1HE_MgzwfeR
https://drive.google.com/drive/u/1/folders/1gMm_YKBZtXB3qUKUpI-LF1HE_MgzwfeR
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– We benchmark our proposed solution Digitize-PID on two datasets: a real-
world dataset of 12 P&IDs and a synthetic Dataset of 100 P&IDs, and
present the results in Section 4.

– We also compared the performance of Digitize-PID against prior state-of-
the-art methods by Rahul et al. [14] and outperformed it.

The remaining sections of the paper are structured as follows: Section 2 de-
scribes the problem statement and discusses about the detection, comprehension,
and reconciliation steps of our proposed pipeline. Section 3 provides details about
the synthetic dataset that we have generated for training and evaluation pur-
poses. This is followed by experimental details and results in Section 4. Finally,
we conclude the paper in Section 5.

2 Proposed Method: Digitize-PID

In this paper, the task is to automate the process of P&ID digitization to con-
vert the scanned legacy P&ID sheets into a structured format. The proposed
method should be capable of identifying different industrial components such
as symbols, pipes along with their labeled text and neighbouring symbols. The
proposed pipeline Digitize-PID takes an input P&ID image and outputs a .csv
file consisting of two separate tables listing - (1) different instances of symbols
with their mapped text labels and connected pipelines; and (2) containing the
list of inter-connectivity between different pipelines representing a graph.

Digitize-PID consists of three high level steps: Detection, Comprehension and
Reconciliation, as shown in Figure 1. The Detection step involves extraction of
different components from P&ID sheets such as text, lines and symbols which
are essential to execute the subsequent steps in the pipeline. The Comprehension
step consists of logically aggregating the different components detected in the
previous stage, for example, the graph generation module takes basic features like
lines, symbols and textual information as input and associates the appropriate
symbols and text to lines. Finally, the Reconciliation step comprises of applying
different domain/business rules and final corrections/tweaks on the output data
of the comprehension stage. Next, we present a detailed description of these 3
steps in the following sub-sections.

2.1 Detection

The detection module comprises of the following sub-modules, as shown in Fig-
ure 2, which are independent and executed in parallel.

– Text Extraction module: P&ID sheets contain text for labeling different
components and specifying different parameters of pipelines. We perform
text extraction via a 2-step process which involves dividing a P&ID image
into multiple fixed-sized overlapping patches. These patches are processed us-
ing a Character Region Awareness for Text Detection (CRAFT) [2] network,
which predicts bounding boxes (Bbox) for text regions. CRAFT works ro-
bustly even for vertically aligned texts. The overlapping Bboxes across over-
lapping patches are merged using IOU metric which helps to localize the text
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Fig. 2: Figure illustrating different sub-modules of the Detection step of Digitize-
PID over a sample P&ID sheet (a small image-patch is zoomed for visual clarity).

with high accuracy and effectively reduces the cases of missing texts. These
merged Bboxes are projected on the input P&ID sheet and text-patches are
extracted. These patches contain single-lined texts read using Tesseract.

– Line Extraction module: A P&ID sheet utilizes a network of different
types of lines to denote connections between different components, which
collectively represent the desired process flow. In Digitize-PID method, we
perform line detection using filters based on a structuring element matrix. In
the pixel representation, a line can be defined as set of continuous adjacent
points in a particular orientation (line orientation). Thus, even an infinites-
imal segment of a line can be seen as a basic building block for the entire
line. A structuring element is defined as a binary matrix of a fixed dimension
(m × n), in which all active regions denote the filtering line’s infinitesimal
segment. However, for practical purposes, we do not choose an infinitesimal
segment for a structuring element matrix, rather we choose a size greater
than the line width and as a function of image spatial resolution, so as to
avoid noise and scaling effects in line detection.

Formally, lets assume a binary image A as an integer grid Zd of dimension
d (here d=2), and B is the line structuring element belonging to the same
set Zd. We first perform erosion on A using B, as given in Eqn. 1. As a result,
we filter out all the elements not resembling B. Next, the filtered regions in
the image are restored by performing a dilation operation, as given in Eqn. 2,
using the same structuring element B.

Aerode = min(x′ ,y′ ):B(x′ ,y′ ) 6=0A(x+ x
′
, y + y

′
) (1)

Adilate = max(x′ ,y′ ):B(x′ ,y′ ) 6=0A
erode(x+ x

′
, y + y

′
) (2)
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conv(P ) =
{ n∑

i=1

λipi
∣∣ n∑
i=1

λi = 1 ∧ ∀i ∈
{

1, .., n
}

: λi ≥ 0 ∧ pi ∈ P
}

(3)

Subsequently, the pixels obtained in the activated regions generate differ-
ent contours over line regions. Each contour formed over set P , containing n
pixel points, is bounded by a convex hull conv(P ). The convex hull conv(P ),
as defined in Eqn. 3, is the intersection of all convex supersets of P [16],
which ensures a tight bound over the convex contour of the line. Finally,
the two extreme end points from the set conv(P ) are computed, along the
orientation of the structuring element and are treated as end points of the
detected line.

Dashed Line detection: Here, we are focusing on Dashed Lines present in
P&IDs which are a series of line segments separated by equal distance, as
shown in Figure 2. We leverage the collinearity and consistency properties of
dashed lines for detection. There are two thresholds that we use for segment-
length and distance between consecutive line-segments (gaps) which are de-
termined based on the average value for the line cluster having the least
mean segment-length and gap. The cases of jumps in the series are very of-
ten noticeable in P&ID sheets which lead to inconsistency in gaps between
segments of dashed lines. This consistency is retained by applying a rule for
filtering out contiguous jumps (three or more). The detected series are then
merged to form the continuous chain. The only candidates for merging are
the series of segments with opposite orientation and in close proximity with
each other which are obtained using the DBSCAN [5] algorithm.

– Basic Shape extraction module: Among various symbols used in P&ID
sheets, certain symbols are composed of primitive shapes, such as rectangles
and circles (Figure 3). Some of these symbols are differentiated via the texts
written inside them. One such basic shape is a circle which are detected
by applying Hough transforms across different overlapping image patches
followed by their aggregation.

– Complex Shape extraction module: P&ID sheets also contain very com-
plex symbols whose structures have very minute inter-class differences and
are difficult to interpret and derive via traditional image-processing. These
symbols are detected using a 2-step process which consists of a deep learning
pipeline for symbol localization followed by fine-grained recognition. As evi-
dent in Figure 3, most of the complex symbols have very similar shape, thus
it is preferable to create a common class for all such symbols for symbol local-
ization. For this, we have trained an FCN [11] based semantic segmentation
model which is used to localize all such symbols. We apply this FCN model
to obtain region-proposals for symbols which are subsequently fed as input
to a TBMSL-Net [18] network trained for fine-grained symbol classification.

2.2 Comprehension
Now, we describe how we derive many essential properties of P&IDs by using the
appropriate logical combination of text, symbols and lines obtained previously.
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Fig. 3: Figure showing a set of 32 different symbols used for Dataset-P&ID.
Symbol1 to Symbol25 are complex symbols as they are structurally very sim-
ilar and are detected using a Complex Shape Extraction module. Remaining
Symbol26 to Symbol32 are detected using the Basic Shape Extraction module.

– Graph generation: The interactions between different components of P&ID
are represented by a web of lines that can be interpreted as a weighted graph
structure. The graph representation assumes that the components are ver-
tices and the connecting lines between components are edges. The connecting
edges are of varying shapes, which can be decomposed into a combination
of multiple straight lines of arbitrary lengths which enables us to create a
graph with all straight line edges. For graph generation, we utilize the line
information extracted in the detection step to filter out the lines with length
smaller than the resolution-dependent threshold(α). Similarly, we remove the
lines overlapping with regions of texts/symbols. The remaining lines (let’s
say n) are taken as edges, and the two end-points of each line are taken as
vertices. This creates n separate graphs, each having 2 vertices. Thus, the
junction centers having k lines will have k vertices, occurring in close prox-
imity, and another k vertices pointing away in different directions. These
neighbouring vertices at the junction points can be interpreted as separate
clusters such that for each cluster, distance of its respective vertices from
its mean (i.e., mean of vertices) would not exceed the line threshold value
ηα (where 0 < η < 1). After optimizing cluster centers with respect to the
vertices, we replace the cluster vertices with their respective cluster centers,
thus aggregating the separate single-edged graphs to form a common graph.

After the graph structure is created, we assign labels to the edges. Gen-
erally, the edges labels are filtered out from the detected text using regular
expressions provided by domain experts or manually by visual inspection.
After the relevant labels are extracted, they are localized to corresponding
graph edges which have the minimum euclidean distance. Finally, these la-
bels on the edges are propagated using Breadth First Search, to the adjoining
edges (computed for edges from left to right) with the additional stopping
condition of not propagating over label-assigned edges.
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– Basic Shape Symbol detection: For extracting rectangular shapes, we
use the vertex sampling method to obtain candidate vertices of possible
rectangular regions, which are later verified as rectangles via their geometric
properties. The vertex points are obtained by applying the morphological
AND operator over the images of vertical and horizontal lines. Further ver-
ification of rectangle shapes is done by using the pixel values to satisfy the
presence of edges across vertices. Finally, shapes which are different combi-
nations of lines, circles and squares are logically assembled and localized. For
cases where multiple symbols have the same shape, we use the embedded-
text to differentiate them. These texts circumscribed by the symbols also
represent their labels.

– Data Aggregation: In this step, different components which include tex-
tual, graphical and symbolic information (including both complex and simple
symbols) are aggregated such that each detected symbol is mapped to its
label, graph nodes, and a separate identification ID is assigned. This helps to
create a database of P&ID symbols with their respective properties. Symbol
mapping with graph vertices is done by using the nearest neighbour with
Euclidean distance as metric. However, a similar approach cannot be used
for text boxes as they are of arbitrary length and texts found using the mean
will not necessarily be closest. Thus, k-nearest neighbors are computed to get
k nearest text boxes corresponding to each symbol. Among these k words,
either the regex provided by domain experts are used, or else consistency in
the pattern of labels is optimized over all the symbols. The symbol labels
pattern which are consistent over other symbol instances in P&ID sheet are
finally assigned to the symbol.

2.3 Reconciliation

The digitized data obtained from Comprehension step, are the final output of our
proposed method. However, to address any errors/failure, we use the reconcilia-
tion step which validates and performs corrections according to domain/business
rules. For example, in some arbitrary case, if the particular symbol’s label has a
static common name over the entire sheet, then the obtained associated text has
to be re-validated and overwritten. Multiple iterations involving reconciliation
steps can dramatically improve the accuracy of the proposed method even in the
customized business scenarios.

3 Dataset

Since, there exists no publicly available dataset for P&ID sheets, we have gener-
ated our own synthetic dataset named Dataset-P&ID for training and evaluation
purposes. Dataset-P&ID consists of 500 annotated P&ID sheets with a 4:1 train-
test ratio and is made publicly available for the benefit of research community.
It includes 32 different symbols, as given in Figure 3, uniformly plotted over
different graph structures which have been generated to mimic real world P&ID
sheets as we have introduced different types of noise such as pixelation, blurring,
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Table 1: Table showing performance of Symbol Recognition on Dataset-P&ID.
(Bottom-right) Figure showing the confusion matrix of complex symbols de-
tected using proposed deep learning pipeline on Dataset-P&ID.

(a) Complex Symbols

Symbol Precision Recall F1-score

1 0.932 0.882 0.906
2 0.968 0.968 0.968
3 0.965 0.847 0.902
4 0.974 0.904 0.938
5 0.986 0.973 0.979
6 0.978 0.967 0.972
7 0.971 0.911 0.940
8 0.823 0.963 0.888
9 0.772 0.986 0.866
10 0.974 0.958 0.966
11 0.741 0.991 0.848
12 0.875 0.793 0.832
13 0.972 0.938 0.955
14 0.916 0.961 0.938
15 0.947 0.997 0.971
16 0.979 0.941 0.960
17 0.813 0.979 0.888
18 0.946 0.993 0.969
19 0.946 0.724 0.820
20 0.962 0.929 0.945
21 0.876 0.988 0.929
22 0.936 0.946 0.941
23 0.881 0.956 0.917
24 0.977 0.965 0.971
25 0.927 0.743 0.825

(b) Basic Shape Symbols

Symbol Precision Recall F1-score

26 0.893 0.937 0.914
27 0.864 0.903 0.883
28 0.961 0.975 0.968
29 0.977 0.984 0.980
30 0.890 0.912 0.901
31 0.904 0.892 0.898
32 0.923 0.948 0.935

salt and pepper noise in the generated sheets. The labels are assigned to sym-
bols and pipelines maintaining the standards followed for real world P&ID. The
ground-truth of the dataset consists of spatial information of symbols along with
associated text labels and their connected pipeline. We provide sets of horizontal
and vertical lines with their coordinates and a separate list containing all the
texts present in P&ID sheets along with their spatial position.

4 Experimental Results and Discussions
Here, we present the system configuration used for conducting experiments fol-
lowed by the performance evaluation of Digitize-P&ID. The performance is eval-
uated based on Recall, Precision and F1-score for different symbols taken over
the test-split. A correct prediction of a symbol includes precise localization of
symbol with IOU > 0.75, symbol class and its associated text-label. Similarly,
the output graph is evaluated based on the accuracy of correct adjacency list.
However, the validation of graph-creation depends on domain information and
is performed as part of the reconciliation step.
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(a) Setup: We have validated and refined our proposed pipeline via repeated
experiments to identify optimal parameters. To begin with, we resize the
images to have width of 7168 pixels while maintaining the aspect-ratio. In
the detection module, for text detection we split the image into multiple
square patches of dimension 800 pixels such that there is an overlap of 50%
with their adjacent patches. The common text regions are segregated and
read by using Tesseract with line configuration. The same process is also
applied on the image by rotating it to capture missing vertical text. Next,
we process the entire image at once for line detection. As mentioned earlier,
the choice of kernel length is taken as 0.1% of the maximum image reso-
lution. Similarly, in the Basic shape extraction module, the choice of range
of radius for hough circle detection is also taken between 0.05% and 0.01%
of maximum image resolution. Further, in case of complex shape detection,
the image is processed at patch level with patches of size 400px. The output
of the FCN model is filtered with threshold probability of 0.8. Finally, the
recognition threshold of TBMSL-Net is taken as 0.9 for identifying a sym-
bol from a region-of-interest of image. In the comprehension step, the graph
is generated as explained earlier, with the DBSCAN threshold of 50 and
the neighbour threshold of 2. The pipeline labels are spread across different
pipelines using the Breadth first search algorithm. In data aggregation, we
use the standard approach of connecting the nearest line entity. However for
texts, we used 5 nearest neighbours, followed by the mapping in accordance
with the symbol label rule provided in the reconciliation step. In the absence
of such rules, the nearest label texts following the pattern is determined as
the associated texts.

(b) Results & Discussion: We first present the overall performance of symbol
detection with correct associations on synthetic Dataset-P&ID in Table 1a
and Table (1b) for the complex and basic shape symbols, respectively. We
also show the confusion matrix to demonstrate the robustness of our pro-
posed complex symbol detection module on the synthetic dataset. We use
the nearest associated text to resolve the conflict of multiple symbols.

Table 2: Comparison of Digitize-P&ID with prior-art [14] on 12 real-world P&IDs
Precision Recall F1-score

Symbols [14] Ours [14] Ours [14] Ours

Bl-V 0.925 0.963 0.936 0.986 0.931 0.974
Ck-V 0.941 0.968 0.969 0.988 0.955 0.978
Ch-sl 1.000 0.990 0.893 0.946 0.944 0.967
Cr-V 1.000 1.000 0.989 0.973 0.995 0.986
Con 1.000 0.975 0.905 0.940 0.950 0.957
F-Con 0.976 0.976 0.837 0.905 0.901 0.939
Gt-V-nc 0.766 0.864 1.000 1.000 0.867 0.927
Gb-V 0.888 0.913 0.941 0.946 0.914 0.929
Ins 1.000 1.000 0.985 0.964 0.992 0.982
GB-V-nc 1.000 1.000 0.929 0.936 0.963 0.967
Others 0.955 0.973 1.000 0.990 0.970 0.981
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Next, we compare our results with Rahul et.al [14]. The symbol detection
accuracy is compared on the same set of symbols, used in [14], on the 12
real P&ID sheets dataset as given in Table 2. It shows that the F1-score
of complex symbol detection module of Digitize-PID is better than prior
art [14]. Please note that the experiment is conducted with all the symbols,
but the network is only trained to identify the concerned symbols and the
remaining symbols are grouped into an ’others’ class. We also illustrate that
our proposed structuring element based line detection is more robust than
the hough line detection used in [14], as shown in Figure 4. Finally, we present
the performance of text detection and recognition on our dataset in Table 3a.
The IOU threshold value is used to find texts having significant overlap with
ground truth which are used for further recognition. Since the text-labels
contain very critical information, we consider a prediction to be correct only
when there is an exact match with the ground-truth label. Table 3b shows the
accuracy for line detection, for both complete (99.34%) and dashed (82.91%)
lines (since line detection is not-learning based, results are computed over
entire dataset).

Table 3: Performance of Digitize-PID on synthetic Dataset-P&ID

(a) Performance of Text Detection and
Recognition module

IOU AccDet AccRec

<0.9 87.18% 79.21%

(b) Performance of Dashed and Com-
plete Line Detection module

Type Correct Accuracy

Complete 90774/91416 99.34%
Dashed 20620/24848 82.91%

Fig. 4: Left image shows our structuring element based line-detection output
and Right image shows hough line-detection [14] output.

5 Conclusion
In this paper, we have proposed a complete automated pipeline for extract-
ing relevant information from P&IDs, which are commonly used across several
industry verticals for depicting a formal process flow. The proposed pipeline,
named Digitize-PID utilizes a combination of state-of-the-art methods for text
recognition, robust line detection using morphological operations and a two-step
deep-learning based pipeline for fine-grained symbol detection and recognition.
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Finally, we combine all the extracted information in a graph and organize the
extracted data into database-compatible tables. In addition to this, we have
synthesized a dataset for P&IDs (Dataset-P&ID) along with their ground-truth
annotations which is made public for validation by other researchers.
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