Skip to main content

FPT and Kernelization Algorithms for the Induced Tree Problem

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2021)

Abstract

The three-in-a-tree problem asks for an induced tree of the input graph containing three mandatory vertices. In 2006, Chudnovsky and Seymour [Combinatorica, 2010] presented the first polynomial time algorithm for this problem, which has become a critical subroutine in many algorithms for detecting induced subgraphs, such as beetles, pyramids, thetas, and even and odd-holes. In 2007, Derhy and Picouleau [Discrete Applied Mathematics, 2009] considered the natural generalization to k mandatory vertices with k being part of the input, and showed that it is \(\mathsf {NP}\)-\(\mathsf {complete}\); they named this problem Induced Tree, and asked what is the complexity of four-in-a-tree. Motivated by this question and the relevance of the original problem, we study the parameterized complexity of Induced Tree. We begin by showing that the problem is \(\mathsf {W}\)[1]-\(\mathsf {hard}\) when jointly parameterized by the size of the solution and minimum clique cover and, under the Exponential Time Hypothesis, does not admit an \(n^{o(k)}\) time algorithm. Afterwards, we use Courcelle’s Theorem to prove tractability under cliquewidth, which prompts our investigation into which parameterizations admit single exponential algorithms; we show that such algorithms exist for the unrelated parameterizations treewidth, distance to cluster, and vertex deletion distance to co-cluster. In terms of kernelization, we present a linear kernel under feedback edge set, and show that no polynomial kernel exists under vertex cover nor distance to clique unless \({\mathsf {NP}}\subseteq {\mathsf {coNP}}/{\mathsf {poly}}\). Along with other remarks and previous work, our tractability and kernelization results cover many of the most commonly employed parameters in the graph parameter hierarchy.

Work partially supported by CAPES, CNPq, and FAPEMIG. Full version permanently available at https://arxiv.org/abs/2007.04468.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The width of a bipartition (AB) of V(G) is the number of edges between the parts. The bisection width of G is equal to the minimum width among all bipartitions of V(G) where \(|A| \le |B| \le |A|+1\).

  2. 2.

    A layout of G is a bijection \(f : V(G) \mapsto [n]\); the width of f is given by \(\max _{uv \in E(G)}|f(u) - f(v)|\). The bandwidth of G is equal to the width of a minimum-width layout.

References

  1. Bienstock, D.: On the complexity of testing for odd holes and induced odd paths. Discrete Math. 90(1), 85–92 (1991). https://doi.org/10.1016/0012-365X(91)90098-M. http://www.sciencedirect.com/science/article/pii/0012365X9190098M

  2. Bienstock, D.: On the complexity of testing for odd holes and induced odd paths. Discrete Math. 90, 85–92 (1991). Discrete Math. 102(1), 109 (1992). https://doi.org/10.1016/0012-365X(92)90357-L. http://www.sciencedirect.com/science/article/pii/0012365X9290357L

  3. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput. 243, 86–111 (2015). 40th International Colloquium on Automata, Languages and Programming (ICALP 2013). https://doi.org/10.1016/j.ic.2014.12.008. http://www.sciencedirect.com/science/article/pii/S0890540114001606

  4. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009). https://doi.org/10.1016/j.jcss.2009.04.001. http://www.sciencedirect.com/science/article/pii/S0022000009000282

  5. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: a new technique for kernelization lower bounds. In: Proceedings of the 28th International Symposium on Theoretical Aspects of Computer Science (STACS), Volume 9 of LIPIcs, pp. 165–176 (2011)

    Google Scholar 

  6. Bondy, J.A., Murty, U.S.R.: Graph Theory, 1st edn. Springer, Heidelberg (2008)

    Book  Google Scholar 

  7. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm for cluster vertex deletion. Theory Comput. Syst. 58(2), 357–376 (2015). https://doi.org/10.1007/s00224-015-9631-7

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, L.: Parameterized complexity of vertex colouring. Discrete Appl. Math. 127(3), 415–429 (2003). https://doi.org/10.1016/S0166-218X(02)00242-1. http://www.sciencedirect.com/science/article/pii/S0166218X02002421

  9. Chang, H.-C., Lu, H.-I.: A faster algorithm to recognize even-hole-free graphs. J. Comb. Theory Ser. B 113, 141–161 (2015). https://doi.org/10.1016/j.jctb.2015.02.001. http://www.sciencedirect.com/science/article/pii/S0095895615000155

  10. Chudnovsky, M., Kapadia, R.: Detecting a theta or a prism. SIAM J. Discrete Math. 22(3), 1164–1186 (2008). arXiv:https://doi.org/10.1137/060672613. https://doi.org/10.1137/060672613

  11. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164(1), 51–229 (2006). http://www.jstor.org/stable/20159988

    Article  MathSciNet  Google Scholar 

  12. Chudnovsky, M., Scott, A., Seymour, P., Spirkl, S.: Detecting an odd hole. J. ACM 67(1) (2020). https://doi.org/10.1145/3375720

  13. Chudnovsky, M., Seymour, P.: The three-in-a-tree problem. Combinatorica 30(4), 387–417 (2010). https://doi.org/10.1007/s00493-010-2334-4

    Article  MathSciNet  MATH  Google Scholar 

  14. Chudnovsky, M., Seymour, P., Trotignon, N.: Detecting an induced net subdivision. J. Comb. Theory Ser. B 103(5), 630–641 (2013). https://doi.org/10.1016/j.jctb.2013.07.005. http://www.sciencedirect.com/science/article/pii/S0095895613000531

  15. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2012). https://doi.org/10.1017/CBO9780511977619

    Book  MATH  Google Scholar 

  16. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1), 77–114 (2000). https://doi.org/10.1016/S0166-218X(99)00184-5. http://www.sciencedirect.com/science/article/pii/S0166218X99001845

  17. Cygan, M., et al.: Parameterized Algorithms, vol. 3. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  18. Derhy, N., Picouleau, C.: Finding induced trees. Discrete Appl. Math. 157(17), 3552–3557 (2009). Sixth International Conference on Graphs and Optimization (2007). https://doi.org/10.1016/j.dam.2009.02.009. http://www.sciencedirect.com/science/article/pii/S0166218X09000663

  19. Derhy, N., Picouleau, C., Trotignon, N.: The four-in-a-tree problem in triangle-free graphs. Graphs Comb. 25(4), 489 (2009). https://doi.org/10.1007/s00373-009-0867-3

    Article  MathSciNet  MATH  Google Scholar 

  20. dos Santos, V.F., da Silva, M.V.G., Szwarcfiter, J.L.: The k-in-a-tree problem for chordal graphs. Matemática Contemporânea 44, 1–10 (2015)

    MathSciNet  Google Scholar 

  21. Doucha, M., Kratochvíl, J.: Cluster vertex deletion: a parameterization between vertex cover and clique-width. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 348–359. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32589-2_32

    Chapter  Google Scholar 

  22. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1(3), 195–207 (1971). http://dx.doi.org/10.1002/net.3230010302. https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230010302

  23. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965). https://doi.org/10.4153/CJM-1965-045-4

    Article  MathSciNet  MATH  Google Scholar 

  24. Fiala, J., Kamiński, M., Lidický, B., Paulusma, D.: The k-in-a-path problem for claw-free graphs. Algorithmica 62(1), 499–519 (2012). https://doi.org/10.1007/s00453-010-9468-z

    Article  MathSciNet  MATH  Google Scholar 

  25. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/9781107415157

    Book  MATH  Google Scholar 

  26. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011). Celebrating Karp’s Kyoto Prize. https://doi.org/10.1016/j.jcss.2010.06.007. http://www.sciencedirect.com/science/article/pii/S0022000010000917

  27. Ganian, R., Ordyniak, S.: The power of cut-based parameters for computing edge disjoint paths. In: Sau, I., Thilikos, D.M. (eds.) WG 2019. LNCS, vol. 11789, pp. 190–204. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30786-8_15

    Chapter  Google Scholar 

  28. Gomes, G.C.M., Guedes, M.R., dos Santos, V.F.: Structural parameterizations for equitable coloring (2019). arXiv:1911.03297

  29. Grüttemeier, N., Komusiewicz, C.: On the relation of strong triadic closure and cluster deletion. Algorithmica 82(4), 853–880 (2019). https://doi.org/10.1007/s00453-019-00617-1

    Article  MathSciNet  MATH  Google Scholar 

  30. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001). https://doi.org/10.1006/jcss.2000.1727. http://www.sciencedirect.com/science/article/pii/S0022000000917276

  31. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. IRSS, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  32. Kawarabayashi, K., Kobayashi, Y., Reed, B.: The disjoint paths problem in quadratic time. J. Comb. Theory Ser. B 102(2), 424–435 (2012). https://doi.org/10.1016/j.jctb.2011.07.004. http://www.sciencedirect.com/science/article/pii/S0095895611000712

  33. Komusiewicz, C., Kratsch, D., Le, V.B.: Matching cut: kernelization, single-exponential time FPT, and exact exponential algorithms. 283, 44–58 (2020). https://doi.org/10.1016/j.dam.2019.12.010. http://www.sciencedirect.com/science/article/pii/S0166218X19305530

  34. Lai, K.-Y., Lu, H.-I., Thorup, M.: Three-in-a-tree in near linear time. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, pp. 1279–1292. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3357713.3384235

  35. Liu, W., Trotignon, N.: The k-in-a-tree problem for graphs of girth at least k. Discrete Appl. Math. 158(15), 1644–1649 (2010). https://doi.org/10.1016/j.dam.2010.06.005. http://www.sciencedirect.com/science/article/pii/S0166218X10002131

  36. Moser, H., Sikdar, S.: The parameterized complexity of the induced matching problem. Discrete Appl. Math. 157(4), 715–727 (2009). https://doi.org/10.1016/j.dam.2008.07.011. http://www.sciencedirect.com/science/article/pii/S0166218X08003211

  37. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986). https://doi.org/10.1016/0196-6774(86)90023-4. http://www.sciencedirect.com/science/article/pii/0196677486900234

  38. Sorge, M., Weller, M.: The graph parameter hierarchy (2019, Unpublished manuscript)

    Google Scholar 

  39. Trotignon, N., Vušković, K.: A structure theorem for graphs with no cycle with a unique chord and its consequences. J. Graph Theory 63(1), 31–67 (2010). https://doi.org/10.1002/jgt.20405. https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.20405. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/jgt.20405

  40. Yap, C.K.: Some consequences of non-uniform conditions on uniform classes. Theor. Comput. Sci. 26(3), 287–300 (1983). https://doi.org/10.1016/0304-3975(83)90020-8. http://www.sciencedirect.com/science/article/pii/0304397583900208

  41. Bonnet, É., Sikora, F.: The graph motif problem parameterized by the structure of the input graph. Discrete Appl. Math. 231, 78–94 (2017). Algorithmic Graph Theory on the Adriatic Coast. https://doi.org/10.1016/j.dam.2016.11.016. http://www.sciencedirect.com/science/article/pii/S0166218X1630539X

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Castro Mendes Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gomes, G.C.M., dos Santos, V.F., da Silva, M.V.G., Szwarcfiter, J.L. (2021). FPT and Kernelization Algorithms for the Induced Tree Problem. In: Calamoneri, T., Corò, F. (eds) Algorithms and Complexity. CIAC 2021. Lecture Notes in Computer Science(), vol 12701. Springer, Cham. https://doi.org/10.1007/978-3-030-75242-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75242-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75241-5

  • Online ISBN: 978-3-030-75242-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics