Skip to main content

The Weisfeiler-Leman Algorithm and Recognition of Graph Properties

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12701))

Included in the following conference series:

Abstract

The k-dimensional Weisfeiler-Leman algorithm (\(k\text {-}\mathrm {WL}\)) is a very useful combinatorial tool in graph isomorphism testing. We address the applicability of \(k\text {-}\mathrm {WL}\) to recognition of graph properties. Let G be an input graph with n vertices. We show that, if n is prime, then vertex-transitivity of G can be seen in a straightforward way from the output of \(2\text {-}\mathrm {WL}\) on G and on the vertex-individualized copies of G. This is perhaps the first non-trivial example of using the Weisfeiler-Leman algorithm for recognition of a natural graph property rather than for isomorphism testing. On the other hand, we show that, if n is divisible by 16, then \(k\text {-}\mathrm {WL}\) is unable to distinguish between vertex-transitive and non-vertex-transitive graphs with n vertices unless \(k=\varOmega (\sqrt{n})\).

O. Verbitsky was supported by DFG grant KO 1053/8-1. He is on leave from the IAPMM, Lviv, Ukraine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A simple inspection of the proof shows that Theorem 7 can be extended to the range of n divisible by 8p for each prime p.

References

  1. Alspach, B.: Point-symmetric graphs and digraphs of prime order and transitive permutation groups of prime degree. J. Comb. Theory Ser. B 15, 12–17 (1973)

    Article  MathSciNet  Google Scholar 

  2. Babai, L.: Isomorphism problem for a class of point-symmetric structures. Acta Math. Acad. Sci. Hungar. 29(3–4), 329–336 (1977). https://doi.org/10.1007/BF01895854

    Article  MathSciNet  MATH  Google Scholar 

  3. Babai, L.: Graph isomorphism in quasipolynomial time. In: Proceedings of the 48th Annual ACM Symposium on Theory of Computing (STOC 2016), pp. 684–697 (2016). https://doi.org/10.1145/2897518.2897542

  4. Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Springer, Berlin (2012). https://doi.org/10.1007/978-1-4614-1939-6

    Book  MATH  Google Scholar 

  5. Cai, J., Fürer, M., Immerman, N.: An optimal lower bound on the number of variables for graph identifications. Combinatorica 12(4), 389–410 (1992). https://doi.org/10.1007/BF01305232

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, G., Ponomarenko, I.: Coherent Configurations. Central China Normal University Press, Wuhan (2019), a draft version is available at http://www.pdmi.ras.ru/~inp/ccNOTES.pdf

  7. Evdokimov, S., Ponomarenko, I.: Circulant graphs: recognizing and isomorphism testing in polynomial time. St. Petersbg. Math. J. 15(6), 813–835 (2004)

    Article  Google Scholar 

  8. Evdokimov, S.: Schurity and separability of association schemes. Ph.D. thesis, St. Petersburg University, St. Petersburg (2004)

    Google Scholar 

  9. Evdokimov, S., Ponomarenko, I.: On highly closed cellular algebras and highly closed isomorphisms. Electr. J. Comb. 6 (1999). http://www.combinatorics.org/Volume_6/Abstracts/v6i1r18.html

  10. Evdokimov, S., Ponomarenko, I., Tinhofer, G.: Forestal algebras and algebraic forests (on a new class of weakly compact graphs). Discrete Math. 225(1–3), 149–172 (2000). https://doi.org/10.1016/S0012-365X(00)00152-7

    Article  MathSciNet  MATH  Google Scholar 

  11. Fuhlbrück, F., Köbler, J., Ponomarenko, I., Verbitsky, O.: The Weisfeiler-Leman algorithm and recognition of graph properties. Tech. rep. arxiv.org/abs/2005.08887 (2020)

  12. Fürer, M.: On the combinatorial power of the Weisfeiler-Lehman algorithm. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 260–271. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_22

    Chapter  Google Scholar 

  13. Grohe, M.: Fixed-point definability and polynomial time on graphs with excluded minors. J. ACM 59(5), 27:1-27:64 (2012). https://doi.org/10.1145/2371656.2371662

    Article  MathSciNet  MATH  Google Scholar 

  14. Immerman, N., Lander, E.: Describing graphs: a first-order approach to graph canonization. In: Selman, A.L. (eds) Complexity Theory Retrospective. Springer, New York, NY (1990). https://doi.org/10.1007/978-1-4612-4478-3_5

  15. Kiefer, S., Ponomarenko, I., Schweitzer, P.: The Weisfeiler-Leman dimension of planar graphs is at most 3. J. ACM 66(6), 44:1-44:31 (2019). https://doi.org/10.1145/3333003

    Article  MathSciNet  MATH  Google Scholar 

  16. Muzychuk, M., Ponomarenko, I.: On pseudocyclic association schemes. ARS Math. Contemp. 5(1), 1–25 (2012)

    Article  MathSciNet  Google Scholar 

  17. Muzychuk, M.E., Klin, M.H., Pöschel, R.: The isomorphism problem for circulant graphs via Schur ring theory. In: Codes and Association Schemes. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 56, pp. 241–264. DIMACS/AMS (1999). https://doi.org/10.1090/dimacs/056/19

  18. Muzychuk, M.E., Tinhofer, G.: Recognizing circulant graphs of prime order in polynomial time. Electr. J. Comb. 5 (1998). http://www.combinatorics.org/Volume_5/Abstracts/v5i1r25.html

  19. Turner, J.: Point-symmetric graphs with a prime number of points. J. Comb. Theory 3, 136–145 (1967)

    Article  MathSciNet  Google Scholar 

  20. Weisfeiler, B., Leman, A.: The reduction of a graph to canonical form and the algebra which appears therein. NTI Ser. 2(9), 12–16 (1968). https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Verbitsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fuhlbrück, F., Köbler, J., Ponomarenko, I., Verbitsky, O. (2021). The Weisfeiler-Leman Algorithm and Recognition of Graph Properties. In: Calamoneri, T., Corò, F. (eds) Algorithms and Complexity. CIAC 2021. Lecture Notes in Computer Science(), vol 12701. Springer, Cham. https://doi.org/10.1007/978-3-030-75242-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75242-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75241-5

  • Online ISBN: 978-3-030-75242-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics