Skip to main content

Three Problems on Well-Partitioned Chordal Graphs

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2021)

Abstract

In this work, we solve three problems on well-partitioned chordal graphs. First, we show that every connected (resp., 2-connected) well-partitioned chordal graph has a vertex that intersects all longest paths (resp., longest cycles). It is an open problem [Balister et al., Comb. Probab. Comput. 2004] whether the same holds for chordal graphs. Similarly, we show that every connected well-partitioned chordal graph admits a (polynomial-time constructible) tree 3-spanner, while the complexity status of the Tree 3-Spanner problem remains open on chordal graphs [Brandstädt et al., Theor. Comput. Sci. 2004]. Finally, we show that the problem of finding a minimum-size geodetic set is polynomial-time solvable on well-partitioned chordal graphs. This is the first example of a problem that is \(\mathsf {NP}\)-hard on chordal graphs and polynomial-time solvable on well-partitioned chordal graphs. Altogether, these results reinforce the significance of this recently defined graph class as a tool to tackle problems that are hard or unsolved on chordal graphs.

J. A. and O. K. are supported by the Institute for Basic Science (IBS-R029-C1). O. K. is also supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. NRF-2018R1D1A1B07050294).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The Helly property of trees states that in every tree, every collection of pairwise intersecting subtrees has a common nonempty intersection.

References

  1. Ahn, J., Jaffke, L., Kwon, O., Lima, P.T.: Well-partitioned chordal graphs: obstruction set and disjoint paths. In: Adler, I., Müller, H. (eds.) WG 2020. LNCS, vol. 12301, pp. 148–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60440-0_12

    Chapter  Google Scholar 

  2. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete Comput. Geom. 9(1), 81–100 (1993). https://doi.org/10.1007/BF02189308

    Article  MathSciNet  MATH  Google Scholar 

  3. Atici, M.: Computational complexity of geodetic set. Int. J. Comput. Math. 79(5), 587–591 (2002). https://doi.org/10.1080/00207160210954

    Article  MathSciNet  MATH  Google Scholar 

  4. Balister, P.N., Györi, E., Lehel, J., Schelp, R.H.: Longest paths in circular arc graphs. Comb. Probab. Comput. 13(3), 311–317 (2004). https://doi.org/10.1017/S0963548304006145

    Article  MathSciNet  MATH  Google Scholar 

  5. Brandstädt, A., Dragan, F.F., Le, H.O., Le, V.B.: Tree spanners on chordal graphs: complexity and algorithms. Theoret. Comput. Sci. 310(1–3), 329–354 (2004). https://doi.org/10.1016/S0304-3975(03)00424-9

    Article  MathSciNet  MATH  Google Scholar 

  6. Brandstädt, A., Dragan, F.F., Le, H., Le, V.B., Uehara, R.: Tree spanners for bipartite graphs and probe interval graphs. Algorithmica 47(1), 27–51 (2007). https://doi.org/10.1007/s00453-006-1209-y

    Article  MathSciNet  MATH  Google Scholar 

  7. Bueno, L.R., Penso, L.D., Protti, F., Ramos, V.R., Rautenbach, D., Souza, U.S.: On the hardness of finding the geodetic number of a subcubic graph. Inf. Process. Lett. 135, 22–27 (2018). https://doi.org/10.1016/j.ipl.2018.02.012

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, L.: Tree spanners: spanning trees that approximate distances. Ph.D. thesis, University of Toronto (1992)

    Google Scholar 

  9. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Discrete Math. 8(3), 359–387 (1995). https://doi.org/10.1137/S0895480192237403

    Article  MathSciNet  MATH  Google Scholar 

  10. Cerioli, M.R., Lima, P.T.: Intersection of longest paths in graph classes. Discrete Appl. Math. 281, 96–105 (2020). https://doi.org/10.1016/j.dam.2019.03.022

    Article  MathSciNet  MATH  Google Scholar 

  11. Chakraborty, D., Das, S., Foucaud, F., Gahlawat, H., Lajou, D., Roy, B.: Algorithms and complexity for geodetic sets on planar and chordal graphs. arXiv:2006.16511 (2020). To appear at ISAAC 2020

  12. Chakraborty, D., Foucaud, F., Gahlawat, H., Ghosh, S.K., Roy, B.: Hardness and approximation for the geodetic set problem in some graph classes. In: Changat, M., Das, S. (eds.) CALDAM 2020. LNCS, vol. 12016, pp. 102–115. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39219-2_9

    Chapter  MATH  Google Scholar 

  13. Chen, G., et al.: Nonempty intersection of longest paths in series-parallel graphs. Discrete Math. 340(3), 287–304 (2017). https://doi.org/10.1016/j.disc.2016.07.023

    Article  MathSciNet  MATH  Google Scholar 

  14. Dourado, M.C., Protti, F., Szwarcfiter, J.L.: On the complexity of the geodetic and convexity numbers of a graph. Lect. Notes Ramanujan Math. Soc. 7, 497–500 (2006)

    Google Scholar 

  15. Dourado, M.C., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: Some remarks on the geodetic number of a graph. Discrete Math. 310(4), 832–837 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ekim, T., Erey, A., Heggernes, P., van ’t Hof, P., Meister, D.: Computing minimum geodetic sets of proper interval graphs. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 279–290. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29344-3_24

    Chapter  Google Scholar 

  17. Fekete, S.P., Kremer, J.: Tree spanners in planar graphs. Discrete Appl. Math. 108(1–2), 85–103 (2001). https://doi.org/10.1016/S0166-218X(00)00226-2

    Article  MathSciNet  MATH  Google Scholar 

  18. Gallai, T.: Problem 4. In: Erdős, P., Katona, G.O.H. (eds.) Proceedings of the Colloquium on Theory of Graphs Held in Tihany, Hungary, 1966, p. 362 (1968)

    Google Scholar 

  19. Golan, G., Shan, S.: Nonempty intersection of longest paths in \(2K_2\)-free graphs. Electron. J. Comb. 25(2), P2.37 (2018)

    MATH  Google Scholar 

  20. Harary, F., Loukakis, E., Tsouros, C.: The geodetic number of a graph. Math. Comput. Modell. 17(11), 89–95 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jobson, A.S., Kézdy, A.E., Lehel, J., White, S.C.: Detour trees. Discrete Appl. Math. 206, 73–80 (2016). https://doi.org/10.1016/j.dam.2016.02.002

    Article  MathSciNet  MATH  Google Scholar 

  22. Joos, F.: A note on longest paths in circular arc graphs. Discussiones Mathematicae Graph Theory 35(3), 419–426 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kellerhals, L., Koana, T.: Parameterized complexity of geodetic set. arXiv:2001.03098 (2020). To appear at IPEC 2020

  24. Klavžar, S., Petkovšek, M.: Graphs with nonempty intersection of longest paths. Ars Combinatoria 29, 43–52 (1990)

    MathSciNet  MATH  Google Scholar 

  25. Loui, M.C., Luginbuhl, D.R.: Optimal on-line simulations of tree machines by random access machines. SIAM J. Comput. 21(5), 959–971 (1992). https://doi.org/10.1137/0221056

    Article  MathSciNet  MATH  Google Scholar 

  26. Madanlal, M.S., Venkatesan, G., Rangan, C.P.: Tree 3-spanners on interval, permutation and regular bipartite graphs. Inf. Process. Lett. 59(2), 97–102 (1996). https://doi.org/10.1016/0020-0190(96)00078-6

    Article  MathSciNet  MATH  Google Scholar 

  27. Mezzini, M.: Polynomial time algorithm for computing a minimum geodetic set in outerplanar graphs. Theoret. Comput. Sci. 745, 63–74 (2018). https://doi.org/10.1016/j.tcs.2018.05.032

    Article  MathSciNet  MATH  Google Scholar 

  28. Panda, B.S., Das, A.: Tree 3-spanners in 2-sep chordal graphs: characterization and algorithms. Discrete Appl. Math. 158(17), 1913–1935 (2010). https://doi.org/10.1016/j.dam.2010.08.015

    Article  MathSciNet  MATH  Google Scholar 

  29. Pelayo, I.M.: Geodesic Convexity in Graphs. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-8699-2

  30. Rautenbach, D., Sereni, J.: Transversals of longest paths and cycles. SIAM J. Discrete Math. 28(1), 335–341 (2014). https://doi.org/10.1137/130910658

    Article  MathSciNet  MATH  Google Scholar 

  31. de Rezende, S.F., Fernandes, C.G., Martin, D.M., Wakabayashi, Y.: Intersecting longest paths. Discrete Math. 313(11), 1401–1408 (2013). https://doi.org/10.1016/j.disc.2013.02.016

    Article  MathSciNet  MATH  Google Scholar 

  32. Venkatesan, G., Rotics, U., Madanlal, M.S., Makowsky, J.A., Rangan, C.P.: Restrictions of minimum spanner problems. Inf. Comput. 136(2), 143–164 (1997). https://doi.org/10.1006/inco.1997.2641

    Article  MathSciNet  MATH  Google Scholar 

  33. Walther, H., Voss, H.J.: Über Kreise in Graphen. Deutscher Verlag der Wissenschaften (1974)

    Google Scholar 

  34. Zamfirescu, T.: On longest paths and circuits in graphs. Mathematica Scandinavica 38(2), 211–239 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Jaffke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahn, J., Jaffke, L., Kwon, Oj., Lima, P.T. (2021). Three Problems on Well-Partitioned Chordal Graphs. In: Calamoneri, T., Corò, F. (eds) Algorithms and Complexity. CIAC 2021. Lecture Notes in Computer Science(), vol 12701. Springer, Cham. https://doi.org/10.1007/978-3-030-75242-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75242-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75241-5

  • Online ISBN: 978-3-030-75242-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics