Skip to main content

Globally Rigid Augmentation of Minimally Rigid Graphs in \(\mathbb {R}^2\)

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2021)

Abstract

The two main concepts of Rigidity Theory are rigidity, where the framework has no continuous deformation, and global rigidity, where the given distance set determines the locations of the points up to isometry. We consider the following augmentation problem. Given a minimally rigid graph \(G=(V,E)\) in \(\mathbb {R}^2\), find a minimum cardinality edge set F such that the graph \(G'=(V,E+F)\) is globally rigid in \(\mathbb {R}^2\). We provide a min-max theorem and an \(O(|V|^2)\) time algorithm for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbot, T.G.: Generalizations of Kempe’s universality theorem. Master’s thesis, MIT (2008). http://web.mit.edu/tabbott/www/papers/mthesis.pdf

  2. Anderson, B.D.O., Shames, I., Mao, G., Fidan, B.: Formal theory of noisy sensor network localization. SIAM J. Discrete Math. 24, 684–698 (2010)

    Article  MathSciNet  Google Scholar 

  3. Aspnes, J., et al.: A theory of network localization. IEEE Trans. Mob. Comput. 5(12), 1663–1678 (2006)

    Article  Google Scholar 

  4. Berg, A.R., Jordán, T.: Algorithms for graph rigidity and scene analysis. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 78–89. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39658-1_10

    Chapter  Google Scholar 

  5. Connelly, R.: Generic global rigidity. Discrete Comput. Geom. 33(4), 549–563 (2005). https://doi.org/10.1007/s00454-004-1124-4

    Article  MathSciNet  MATH  Google Scholar 

  6. Fekete, Z., Jordán, T.: Uniquely localizable networks with few anchors. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2006. LNCS, vol. 4240, pp. 176–183. Springer, Heidelberg (2006). https://doi.org/10.1007/11963271_16

    Chapter  Google Scholar 

  7. García, A., Tejel, J.: Augmenting the rigidity of a graph in \({\mathbb{R}^{2}}\). Algorithmica 59(2), 145–168 (2011). https://doi.org/10.1007/s00453-009-9300-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Gortler, S.J., Healy, A.D., Thurston, D.P.: Characterizing generic global rigidity. Am. J. Math. 132(4), 897–939 (2010)

    Article  MathSciNet  Google Scholar 

  9. Hopcroft, J., Tarjan, R.: Dividing a graph into triconnected components. SIAM J. Comput. 2, 135–158 (1973)

    Article  MathSciNet  Google Scholar 

  10. Hsu, T.S., Ramachandran, V.: A linear time algorithm for triconnectivity augmentation. In: Proceedings of the Annual Symposium on Foundations of Computer Science, pp. 548–559 (1991)

    Google Scholar 

  11. Jackson, B., Jordán, T.: Connected rigidity matroids and unique realizations of graphs. J. Comb. Theory Ser. B 94, 1–29 (2005)

    Article  MathSciNet  Google Scholar 

  12. Jackson, B., Jordán, T.: Graph theoretic techniques in the analysis of uniquely localizable sensor networks. In: Mao, G., Fidan, B. (eds.) Localization Algorithms and Strategies for Wireless Sensor Networks, pp. 146–173. IGI Global (2009)

    Google Scholar 

  13. Jordán, T.: On the optimal vertex-connectivity augmentation. J. Comb. Theory Ser. B 63, 8–20 (1995)

    Article  MathSciNet  Google Scholar 

  14. Jordán, T.: Combinatorial rigidity: graphs and matroids in the theory of rigid frameworks. In: Discrete Geometric Analysis, Volume 34 of MSJ Memoirs, pp. 33–112. Mathematical Society of Japan (2016)

    Google Scholar 

  15. Jordán, T., Mihálykó, A.: Minimum cost globally rigid subgraphs. In: Bárány, I., Katona, G.O.H., Sali, A. (eds.) Building Bridges II. BSMS, vol. 28, pp. 257–278. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-59204-5_8

    Chapter  Google Scholar 

  16. Kaewprapha, P., Li, J., Puttarak, N.: Network localization on unit disk graphs. In: 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011, pp. 1–5 (2011)

    Google Scholar 

  17. Király, Cs., Mihálykó, A.: Globally rigid augmentation of minimally rigid graphs in \({\mathbb{R}^{2}}\). Technical report TR-2020-07, Egerváry Research Group, Budapest (2020). www.cs.elte.hu/egres

  18. Király, Cs., Mihálykó, A.: Sparse graphs and an augmentation problem. Technical report TR-2020-06, Egerváry Research Group, Budapest (2020). www.cs.elte.hu/egres. An extended abstract appeared in Bienstock, D., Zambelli, G. (eds.) Integer Programming and Combinatorial Optimization, IPCO 2020. Lecture Notes in Computer Science, vol. 12125, pp. 238–251. Springer, Cham (2020)

  19. Laman, G.: On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4, 331–340 (1970). https://doi.org/10.1007/BF01534980

    Article  MathSciNet  MATH  Google Scholar 

  20. Pollaczek-Geiringer, H.: Über die Gliederung ebener Fachwerke. ZAMM-J. Appl. Math. Mech. 7(1), 58–72 (1927)

    Article  Google Scholar 

  21. Saxe, J.B.: Embeddability of weighted graphs in \(k\)-space is strongly NP-hard. Technical report, Computer Science Department, Carnegie-Mellon University, Pittsburgh, PA (1979)

    Google Scholar 

  22. So, A., Ye, Y.: Theory of semidefinite programming for sensor network localization. Math. Program. 109, 405–414 (2005). https://doi.org/10.1007/s10107-006-0040-1

    Article  MathSciNet  MATH  Google Scholar 

  23. Whiteley, W.: Some matroids from discrete applied geometry. In: Bonin, J.E., Oxley, J.G., Servatius, B. (eds.) Matroid Theory, Volume 197 of Contemporary Mathematics, pp. 171–311. AMS (1996)

    Google Scholar 

Download references

Acknowledgements

Project no. NKFI-128673 has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the FK_18 funding scheme. The first author was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by the ÚNKP-19-4 and ÚNKP-20-5 New National Excellence Program of the Ministry for Innovation and Technology. The second author was supported by the European Union, co-financed by the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002). The authors are grateful to Tibor Jordán for his help, the inspiring discussions and his comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Király .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Király, C., Mihálykó, A. (2021). Globally Rigid Augmentation of Minimally Rigid Graphs in \(\mathbb {R}^2\). In: Calamoneri, T., Corò, F. (eds) Algorithms and Complexity. CIAC 2021. Lecture Notes in Computer Science(), vol 12701. Springer, Cham. https://doi.org/10.1007/978-3-030-75242-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75242-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75241-5

  • Online ISBN: 978-3-030-75242-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics