Skip to main content

Private Set Operations from Oblivious Switching

  • Conference paper
  • First Online:
Public-Key Cryptography – PKC 2021 (PKC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12711))

Included in the following conference series:

Abstract

Private set intersection reveals the intersection of two private sets, but many real-world applications require the parties to learn only partial information about the intersection. In this paper we introduce a new approach for computing arbitrary functions of the intersection, provided that it is safe to also reveal the cardinality of the intersection. In the most general case, our new protocol provides the participants with secret shares of the intersection, which can be fed into any generic 2PC protocol. Certain computations on the intersection can also be done even more directly and efficiently, avoiding this secret-sharing step. These cases include computing only the cardinality of intersection, or the “cardinality-sum” application proposed in Ion et al. (ePrint 2017). Compared to the state-of-the-art protocol for computing on intersection (Pinkas et al., Eurocrypt 2019), our protocol has about \(2.5-3\times \) less communication, and has faster running time on slower (50 Mbps) networks.

Our new techniques can also be used to privately compute the union of two sets as easily as computing the intersection. Our protocol concretely improves the leading private set union protocol (Kolesnikov et al., Asiacrypt 2020) by a factor of \(2-2.5\times \), depending on the network speed. We then show how private set union can be used in a simple way to realize the “Private-ID” functionality suggested by Buddhavarapu et al. (ePrint 2020). Our protocol is significantly faster than the prior Private-ID protocol, especially on fast networks.

All of our protocols are in the two-party setting and are secure against semi-honest adversaries.

Authors from Oregon State University - Partially supported by NSF award 1617197 and a Facebook research award.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Appending the index of the hash function is helpful for dealing with edge cases like \(h_1(x)=h_2(x)\), which happen with non-negligible probability.

References

  1. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer and extensions for faster secure computation. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 535–548. ACM Press (November 2013)

    Google Scholar 

  2. Blanton, M., Aguiar, E.: Private and oblivious set and multiset operations. In: Youm, H.Y., Won, Y. (eds.) ASIACCS 12, pp. 40–41. ACM Press (May 2012)

    Google Scholar 

  3. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure computation. In: Cavallaro, L., Kinder, J., Wang, X.F., Katz, J. (eds.) ACM CCS 2019, pp. 291–308. ACM Press (November 2019)

    Google Scholar 

  4. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators: silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_16

    Chapter  Google Scholar 

  5. Buddhavarapu, P., Knox, A., Mohassel, P., Sengupta, S., Taubeneck, E., Vlaskin, V.: Private matching for compute. Cryptology ePrint Archive, Report 2020/599 (2020). https://eprint.iacr.org/2020/599

  6. De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35404-5_17

    Chapter  Google Scholar 

  7. Chase, M., Miao, P.: Private set intersection in the Internet setting from lightweight oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 34–63. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_2

    Chapter  Google Scholar 

  8. Ciampi, M., Orlandi, C.: Combining private set-intersection with secure two-party computation. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 464–482. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_25

    Chapter  Google Scholar 

  9. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3_13

    Chapter  Google Scholar 

  10. De Cristofaro, E., Tsudik, G.: Experimenting with fast private set intersection. In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X. (eds.) Trust 2012. LNCS, vol. 7344, pp. 55–73. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30921-2_4

    Chapter  Google Scholar 

  11. Camenisch, J., Zaverucha, G.M.: Private intersection of certified sets. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108–127. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4_7

    Chapter  Google Scholar 

  12. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an efficient and scalable protocol. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 789–800. ACM Press (November 2013)

    Google Scholar 

  13. Debnath, S.K., Dutta, R.: Secure and efficient private set intersection cardinality using bloom filter. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 209–226. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23318-5_12

    Chapter  Google Scholar 

  14. Egert, R., Fischlin, M., Gens, D., Jacob, S., Senker, M., Tillmanns, J.: Privately computing set-union and set-intersection cardinality via bloom filters. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 413–430. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19962-7_24

    Chapter  MATH  Google Scholar 

  15. Freedman, M.J., Hazay, C., Nissim, K., Pinkas, B.: Efficient set intersection with simulation-based security. J. Cryptol. 29(1), 115–155 (2016)

    Article  MathSciNet  Google Scholar 

  16. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_1

    Chapter  Google Scholar 

  17. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better than custom protocols? In: 19th Annual Network and Distributed System Security Symposium, NDSS 2012, San Diego, California, USA, February 5–8, 2012 (2012)

    Google Scholar 

  18. Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic communities. In: EC, pp. 78–86 (1999)

    Google Scholar 

  19. Ion, M., et al.: On deploying secure computing commercially: private intersection-sum protocols and their business applications. Cryptology ePrint Archive, Report 2019/723 (2019). https://eprint.iacr.org/2019/723

  20. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_9

    Chapter  Google Scholar 

  21. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 54–70. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_4

    Chapter  Google Scholar 

  22. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious PRF with applications to private set intersection. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 818–829. ACM Press (October 2016)

    Google Scholar 

  23. Kolesnikov, V., Rosulek, M., Trieu, N., Wang, X.: Scalable private set union from symmetric-key techniques. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 636–666. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_23

    Chapter  Google Scholar 

  24. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_15

    Chapter  Google Scholar 

  25. Meadows, C.A.: A more efficient cryptographic matchmaking protocol for use in the absence of a continuously available third party. In: Proceedings of the 1986 IEEE Symposium on Security and Privacy, Oakland, California, USA, April 7–9, 1986, pp. 134–137 (1986)

    Google Scholar 

  26. Miao, P., Patel, S., Raykova, M., Seth, K., Yung, M.: Two-sided malicious security for private intersection-sum with cardinality. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 3–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_1

    Chapter  Google Scholar 

  27. Mohassel, P., Rindal, P., Rosulek, M.: Fast database joins for secret shared data. Cryptology ePrint Archive, Report 2019/518 (2019). https://eprint.iacr.org/2019/518

  28. Mohassel, P., Sadeghian, S.: How to hide circuits in MPC an efficient framework for private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 557–574. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_33

    Chapter  MATH  Google Scholar 

  29. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight private set intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 401–431. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_13

    Chapter  Google Scholar 

  30. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, malicious private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 739–767. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_25

    Chapter  Google Scholar 

  31. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection using permutation-based hashing. In: 24th USENIX Security Symposium, USENIX Security 15, pp. 515–530 (2015)

    Google Scholar 

  32. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI with linear communication. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 122–153. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_5

    Chapter  Google Scholar 

  33. Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via Cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 125–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_5

    Chapter  Google Scholar 

  34. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension. In: 23rd USENIX Security Symposium, USENIX Security 14, pp. 797–812 (2014)

    Google Scholar 

  35. Rabin, M.O.: How to exchange secrets with oblivious transfer. Cryptology ePrint Archive, Report 2005/187 (2005). http://eprint.iacr.org/2005/187

  36. Rindal, P., Rosulek, M.: Improved private set intersection against malicious adversaries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 235–259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_9

    Chapter  Google Scholar 

  37. Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execution. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1229–1242. ACM Press (October/November 2017)

    Google Scholar 

  38. Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to association rule mining. J. Comput. Secur. 13(4), 593–622 (2005)

    Article  Google Scholar 

  39. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_8

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayathri Garimella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garimella, G., Mohassel, P., Rosulek, M., Sadeghian, S., Singh, J. (2021). Private Set Operations from Oblivious Switching. In: Garay, J.A. (eds) Public-Key Cryptography – PKC 2021. PKC 2021. Lecture Notes in Computer Science(), vol 12711. Springer, Cham. https://doi.org/10.1007/978-3-030-75248-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75248-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75247-7

  • Online ISBN: 978-3-030-75248-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics