Skip to main content

An Approach to Intelligent Control Public Transportation System Using a Multi-agent System

  • Conference paper
  • First Online:
Enterprise Information Systems (ICEIS 2020)

Abstract

Traffic congestion has increased globally during the last decade representing an undoubted menace to the quality of urban life. A significant contribution can be made by the public transport system in reducing the problem intensity if it provides high-quality service. However, public transportation systems are highly complex because of the modes involved, the multitude of origins and destinations, and the amount and variety of traffic. They have to cope with dynamic environments where many complex and random phenomena appear and disturb the traffic network. To ensure good service quality, a control system should be used in order to maintain the public transport scheduled timetable. The quality service should be measured in terms of public transport key performance indicators (KPIs) for the wider urban transport system and issues. In fact, in the absence of a set of widely accepted performance measures and transferable methodologies, it is very difficult for public transport to objectively assess the effects of specific regulation system and to make use of lessons learned from other public transport systems. Moreover, vehicle traffic control tasks are distributed geographically and functionally, and disturbances might influence on many itineraries and occur simultaneously. Unfortunately, most existing traffic control systems consider only a part of the performance criteria and propose a solution without man-aging its influence on neighboring areas of the network. This paper sets the context of performance measurement in the field of public traffic management and presents the regulation support system of public transportation (RSSPT). The aim of this regulation support system is (i) to detect the traffic perturbation by distinguishing a critical performance variation of the current traffic, (ii) and to find the regulation action by optimizing the performance of the quality service of the public transportation. We adopt a multi-agent approach to model the system, as their distributed nature, allows managing several disturbances concurrently. The validation of our model is based on the data of an entire journey of the New York City transport system in which two perturbation scenarios occur. This net-work has the nation’s largest bus fleet and more subway and commuter rail cars than all other U.S. transit systems combined. The obtained results show the efficiency of our system especially in case many performance indicators are needed to regulate a disturbance situation. It demonstrates the advantage as well of the multiagent approach and shows how the agents of different neighboring zones on which the disturbance has an impact, coordinate and adapt their plans and solve the issue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morri, N., Hadouaj, S., Ben Said, L.: Intelligent regulation system to optimize the service performance of the public transport. In: Proceedings of the 22nd International Conference on Enterprise Information Systems - Volume 1: ICEIS, pp. 416–427 (2020). ISBN 978-989-758-423-7. https://doi.org/10.5220/0009416104160427

  2. Barbeau, S., Georggi, N., Winters, P.: Global positioning system integrated with personalized real-time transit information from automatic vehicle location. Transp. Res. Rec. J. Transp. Res. Board 2143, 168–176 (2010)

    Article  Google Scholar 

  3. Yan, Y.: Bus transit travel time reliability evaluation based on automatic vehicle location data. J. Southeast Univ. 28(1), 100–105 (2012)

    Google Scholar 

  4. European Commission, “White paper – Roadmap to a single European Transport Area” - Towards a competitive and resource efficient transport system (2011)

    Google Scholar 

  5. Newell, G.F., Potts, R.B.: Maintaining a bus schedule. In: 1964 2nd Conference of the Australian Road Research Board (ARRB), Melbourne (1964)

    Google Scholar 

  6. Feng, W., Figliozzi, M. using archived AVL/APC bus data to identify spatial-temporal causes of bus bunching. Compendium of Papers of 90th Transportation Research Board, Annual Meeting, Washington DC (2011)

    Google Scholar 

  7. Feng, W., Figliozzi, M.: Empirical findings of bus bunching distributions and attributes using archived avl/apc bus data. In: Proceedings of the 11th International Conference of Chinese Transportation Professionals (ICCTP). ASCE Reston, VA (2011)

    Google Scholar 

  8. Moreira-Matias, L., Ferreira, C., Gama, J., Mendes-Moreira, J., Sousa, J.: Bus bunching detection by mining sequences of headway deviations. In: Perner, P.. (ed.) Advances in Data Mining. Applications and Theoretical Aspects. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence), vol. 7377, pp. 77–91. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Verbich, D., Diab, E., El-Geneidy, A.: Have they bunched yet? An exploratory study of the impacts of bus bunching on dwell and running times. Pub. Transp. 8(2), 225–242 (2016). https://doi.org/10.1007/s12469-016-0126-y

    Article  Google Scholar 

  10. Newell, G.: Unstable Brownian motion of a bus trip. In: Statistical Mechanics and Statistical Methods in Theory and Application, pp. pp. 645–667. Springer, Heidelberg (1977)

    Google Scholar 

  11. Zhao, J., Dessouky, M., Bukkapatnam, S.: Optimal slack time for schedule-based transit operations. Transp. Sci. 40(4), 529–539 (2006)

    Article  Google Scholar 

  12. Bellei, G., Gkoumas, K.: Transit vehicles headway distribution and service irregularity. Pub. Transp. 2, 269–289 (2010). https://doi.org/10.1007/s12469-010-0024-7

    Article  Google Scholar 

  13. Zhou, X., Wang, Y., Ji, X., Cottrill, C.: Coordinated control strategy for multi-line bus bunching in common corridors. Sustainability 11, 6221 (2019). https://doi.org/10.3390/su11226221

    Article  Google Scholar 

  14. Zolfaghari, S., Azizi, N., Jaber, M.Y.: A model for holding strategy in public transit systems with real-time information. Int. J. Transp. Manage. 2(2), 99–110 (2004)

    Google Scholar 

  15. Bartholdi, J.J., Eisenstein, D.D.: A self-coördinating bus route to resist bus bunching. Transp. Res. Part B 46(4), 481–491 (2012)

    Google Scholar 

  16. Zidi, S., Maouche, S., Hammadi, S.: Real-time route planning of the public transportation system. In: 2006 IEEE Intelligent Transportation Systems Conference, Toronto, Ont., Canada (2006). https://doi.org/10.1109/ITSC.2006.1706718

  17. Ould Sidi, M., Hayat, S., Hammadi, S., Borne, P.: A novel approach to developing and evaluating regulation strategies for urban transport disrupted networks. Int. J. Comput. Integ. Manuf. 21(4), 480–493 (2008).

    Google Scholar 

  18. Pilachowski, J.M.: An Approach to Reducing Bus Bunching. University of California Transportation Center (2009)

    Google Scholar 

  19. Daganzo, C.F., Pilachowski, J.: Reducing bunching with bus-to-bus cooperation. Transp. Res. Part B 45(1), 267–277 (2011)

    Article  Google Scholar 

  20. He, S.-X.: An anti-bunching strategy to improve bus schedule and headway reliability by making use of the available accurate information. Comput. Ind. Eng. 85, 17–32 (2015)

    Article  Google Scholar 

  21. Schmöcker, J., Sun, W., Fonzone, A., Liu, R.: Bus bunching along a corridor served by two lines. Transp. Res. Part B Meth. 93, 300–317 (2016)

    Article  Google Scholar 

  22. Gaddouri, R., Brenner, L., Demongodin, I.: Modélisation et simulation du trafic routier par réseaux de petri lots triangulaires. In: 10e Conférence Internationale de MOdélisation, Optimisation et Simulation - MOSIM’14 - Nancy – France (2014)

    Google Scholar 

  23. Carosi, S., Gualandi, S., Malucelli, F., Tresoldi, E.: Delay management in public transportation: service regularity issues and crew re-scheduling. In: 18th Euro Working Group on Transportation, EWGT, Delft, The Netherlands (2015)

    Google Scholar 

  24. Hassannayebi, E., Zegordi, S.H., Amin-Naseri, M.R., Yaghini, M.: Optimizing headways for urban rail transit services using adaptive particle swarm algorithms. Pub. Transp. 10(1), 23–62 (2017). https://doi.org/10.1007/s12469-016-0147-6

    Article  Google Scholar 

  25. Li, Y., Tan, H.: En-route headway-based bus reliability with real-time data at network scale. Transp. Saf. 2, 236–245 (2020). https://doi.org/10.1093/tse/tdaa017

    Article  Google Scholar 

  26. Fabien, B., Scemama G.: Modélisation d’une perturbation sur un réseau de transport: le modèle Incident. In: 16–19 mai 2000, IAE - 15, Quai Claude Bernard, Lyon, 69007 Inrets - Gretia, Institut National de Recherche sur les Transports et leur Sécurité (2000)

    Google Scholar 

  27. Laichour, H.: Thesis, Modélisation Multi-agent et aide à la décision: application à la régulation des correspondances dans les réseaux de transport urbain. Université des sciences et technologies de Lille (2002)

    Google Scholar 

  28. Bouamrane, K., Liazid, A., Amrani, F., Hamdadou, D.: Modelling and cognitive simulation in dynamic situation: decision-making for regulation of an urban transportation system, 5–7 Avril 2006 (2006). ISBN 9957-8592-0-X

    Google Scholar 

  29. Teodorovic, D.: Transport modeling by Multi-agent systems: a swarm intelligence approach. Transp. Plan. Technol. 26, 289–312 (2003)

    Article  Google Scholar 

  30. de Oliveira, L.B., Camponogara, E.: Multi-agent model predictive control of signaling split in urban traffic networks. Trans. Res. Part C 18, 120–139 (2010)

    Article  Google Scholar 

  31. Gershenson, C., Pineda, L.A.: Why does public transport not arrive on time? The pervasive-ness of equal headway instability. PLOS ONE 4(10), e7292 (2009)

    Article  Google Scholar 

  32. Balaji, P.G., Sachdeva, G., Srinivasan, D.: Multi-agent system based urban traffic management. In: 2007 IEEE Congress on Evolutionary Computation (2007)

    Google Scholar 

  33. Kachroudi. Thesis, Commande et optimisation pour la régulation du trafic urbain multimodale sur de grands réseaux urbains. Université d'Evry Val d'Essone (2010)

    Google Scholar 

  34. Fayech. Thesis, Régulation des réseaux de transport multimodal: Systèmes multi-agents et algorithmes évolutionnistes. Université de Lille1- Sciences et Technologies (2003)

    Google Scholar 

  35. Bhouri, N., Balbo, F., Pinson, S., Tlig, M.: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Lyon (2011). ISBN 978-0-7695-4513-4

    Google Scholar 

  36. Albright, E., Figliozzi, M.A.: Analysis of the impacts of transit signal priority on bus bunching and performance. In: Proceedings of the Conference on Advanced Systems for Public Transport (CASPT), Santiago, Chile (2012)

    Google Scholar 

  37. Mejri, H.: Thesis, Un système d’aide à la régulation d’un réseau de transport multimodal perturbé: réponse au problème de congestion. École Centrale de Lille (2012)

    Google Scholar 

  38. Ben Rabah, N., Hammadi, S., Tahon, C.: Intelligent regulation support system for multimodal traffic. In: IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT) (2014).https://doi.org/10.1109/WI-IAT.2014.191

  39. Tromp, M., Liu, X., Graham, D.J.: Development of key performance indicator to compare regularity of service between urban bus operators. Transp. Res. Rec. J. Transp. Res. Board 2216(1), 33–41 (2011)

    Article  Google Scholar 

  40. Napiah, M., Kamaruddin, I., Suwardo: Punctuality index and expected average waiting time of stage buses in mixed traffic. WIT Trans. Built Environ. 116, 215–226 (2015). WIT Press. ISSN 1743–3509 (online)

    Google Scholar 

  41. Trompet, M.: The Development of a Performance Indicator to Compare Regularity of Service between Urban Bus Operators. Imperial College London, Skempton (2010)

    Google Scholar 

  42. Cats, O., Burghout, W., Toledo, T., Koutsopoulos, H.N.: Mesoscopic modeling of bus public transportation. Transp. Res. Board Nat. Acad. Washington D.C. 2188, 9–18 (2010)

    Article  Google Scholar 

  43. Bhouri, N., Aron, M., Scemama, G.: Gini index for evaluating bus reliability performances for operators and riders. Transportation Research Board, Washington, United States. Transportation Research Board, 13 p. (2016)

    Google Scholar 

  44. Henderson, G., Kwong, P., Adkins, H.: Regularity indices for evaluating transit performance. Transp. Res. Rec. 1297, 3–9 (1991)

    Google Scholar 

  45. Carosi, S.., Gualandi, S., Malucelli, F., Tresoldi, E.: Delay management in public transportation: service regularity issues and crew re-scheduling. In: 18th Euro Working Group on Transportation, EWGT, Delft, The Netherlands, July 2015 (2015)

    Google Scholar 

  46. Yaakub, N., Napiah, M.: public transport: punctuality index for bus operation. World Acad. Sci. Eng. Technol. Int. J. Civ. Environ. Eng. 5(12), 857–862 (2011)

    Google Scholar 

  47. Chen, X., Yu, L., Zhang, Y., Guo, J.: Analyzing urban bus service reliability at the stop, route, and network levels. Transp. Res. Part A 43, 722–734 (2009)

    Google Scholar 

  48. Saberi, M., Ali Zockaie, K.: Definition and properties of alternative bus service reliability measures at the stop level. J. Pub. Transp. 16(1), 97–122 (2013)

    Article  Google Scholar 

  49. Ceder, A. A.: Public Transit Planning and Operation: Theory, Modelling and Practice. Elsevier Ltd. (2007)

    Google Scholar 

  50. Ma, Z., Luis, F., Mahmoud, M.: A framework for the development of bus service reliability measures. In: Australasian Transport Research Forum, Australia (2013)

    Google Scholar 

  51. Dueker, K.J., Kimpel, T.J., Strathman, J.G.: Determinants of bus dwell time. J. Pub. Transp. 7(1), 21–40 (2014). https://doi.org/10.5038/2375-0901.7.1.2

    Article  Google Scholar 

  52. TRT: Dwell time - Transportation Research Thesaurus (TRT). trt.trb.org (2017)

  53. Levinson, H.: Analyzing transit travel time performance. Transp. Res. Rec. 915, 1–6 (1983)

    Google Scholar 

  54. Tran, V.T., Eklund, P., Cook, C.: Toward real-time decision making for bus service reliability. In: International Symposium on Communications and Information Technologies (ISCIT) (2012). https://doi.org/10.1109/ISCIT.2012.6380856

  55. Cats, O., Larijani, A.N., Koutsopoulos, H.N., Burghout, W.: Impacts of holding control strategies on transit performance: a bus simulation model analysis. Transp. Res. Rec. J. Transp. Res. Board 2216, 51–58 (2011)

    Article  Google Scholar 

  56. Yan, X.Y., Crookes, R.J.: Reduction potentials of energy demand and GHG emissions in China’s road transport sector. Energy Policy 37, 658–668 (2009)

    Article  Google Scholar 

  57. Linstone, H.A., Turrof, M.: The Delphi Method - Techniques and Applications. Addison-Wesley Publishing Company (1975)

    Google Scholar 

  58. Cambridge Systematics Inc., PB Consult Inc., and System Metrics Group: Analytical tools for asset management. 545, NCHRP report (2005)

    Google Scholar 

  59. Foloff, E., Rizi, M., Sapiroto, A.: Bases et pratiques de regulation, RATP Direction du reseau routier, RC/MSE (1989)

    Google Scholar 

  60. Morri, N., Hadouaj, S., Ben Said, L.: Multi-agent optimization model for multi-criteria regulation of multi-modal public transport. NNGT Int. J. Artif. Intell. 3 (2015). https://doi.org/03.IJAI.2015.1.8

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morri, N., Hadouaj, S., Ben Said, L. (2021). An Approach to Intelligent Control Public Transportation System Using a Multi-agent System. In: Filipe, J., Śmiałek, M., Brodsky, A., Hammoudi, S. (eds) Enterprise Information Systems. ICEIS 2020. Lecture Notes in Business Information Processing, vol 417. Springer, Cham. https://doi.org/10.1007/978-3-030-75418-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75418-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75417-4

  • Online ISBN: 978-3-030-75418-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics