Skip to main content

A Modern Approach to Personalize Exergames for the Physical Rehabilitation of Children Suffering from Lumbar Spine

  • Conference paper
  • First Online:
Enterprise Information Systems (ICEIS 2020)
  • The original version of this chapter was revised: Special characters in the names of Cristian Gómez-Portes and Santiago Sánchez-Sobrino have been corrected. The correction to this chapter is available at https://doi.org/10.1007/978-3-030-75418-1_42

Abstract

Physical rehabilitation of people with injuries or illnesses related to the lumbar spine involves an intensive treatment to reduce pain or improve mobility. Research studies have evidenced the benefits of complementing the patient’s regular treatment with exercise routines at home. However, in the case of children and adolescents, there is a risk of abandoning the exercise routine if it is not motivating enough. Currently, there is a trend which consists in using games for rehabilitation exercises, called exergames, as a possible solution for motivating patients while they perform physical rehabilitation. However, both customizing and creating them is still a task that requires considerable investment both in time and effort. Thus, this paper presents a language along with a system based on the physical rehabilitation of children suffering from some sort of lower back pain, which enables the customization and the automatic generation of exergames. We have conducted an experiment with children for evaluating the capabilities of our approach. The obtained results show that the tool is fun, interesting and easy to use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 16 June 2021

    In the originally published version of chapter 35, the special characters in the names of Cristian Gómez-Portes and Santiago Sánchez-Sobrino had been left out initially due to conversion errors. This has been corrected.

Notes

  1. 1.

    https://www.khronos.org/gltf/.

  2. 2.

    https://docs.microsoft.com/es-es/azure/kinect-dk/body-joints.

  3. 3.

    https://unity.com/es.

  4. 4.

    https://www.blender.org/.

  5. 5.

    https://azure.microsoft.com/es-es/services/kinect-dk/.

  6. 6.

    https://docs.microsoft.com/es-es/azure/kinect-dk/system-requirements.

  7. 7.

    https://azure.microsoft.com/es-es/services/cognitive-services/speech-services/.

References

  1. Clark, R.A., et al.: Validity of the microsoft kinect for assessment of postural control. Gait Posture 36(3), 372–377 (2012). https://doi.org/10.1016/j.gaitpost.2012.03.033

    Article  Google Scholar 

  2. Da Gama, A., Fallavollita, P., Teichrieb, V., Navab, N.: Motor rehabilitation using kinect: a systematic review. Games Health J. 4(2), 123–135 (2015). https://doi.org/10.1089/g4h.2014.0047

    Article  Google Scholar 

  3. Davis, F.D.: User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. Int. J. Man-Mach. Stud. 38(3), 475–487 (1993)

    Article  Google Scholar 

  4. Deutsch, J.E., Robbins, D., Morrison, J., Bowlby, P.G.: Wii-based compared to standard of care balance and mobility rehabilitation for two individuals post-stroke. In: 2009 Virtual Rehabilitation International Conference, pp. 117–120. IEEE (2009). https://doi.org/10.1109/ICVR.2009.5174216

  5. Duthey, B.: Background paper 6.24 low back pain. In: Priority medicines for Europe and the world. Global Burden of Disease (2010),(March), pp. 1–29 (2013)

    Google Scholar 

  6. Eckert, M., Gómez-Martinho, I., Meneses, J., Martínez, J.F.: New approaches to exciting exergame-experiences for people with motor function impairments. Sensors 17(2), 354 (2017). https://doi.org/10.3390/s17020354

    Article  Google Scholar 

  7. Esculier, J.F., Vaudrin, J., Beriault, P., Gagnon, K., Tremblay, L.E.: Home-based balance training programme using wii fit with balance board for Parkinson’s disease: a pilot study. J. Rehabil. Med. 44(2), 144–150 (2012). https://doi.org/10.2340/16501977-0922

    Article  Google Scholar 

  8. Fernandez-Cervantes, V., Neubauer, N., Hunter, B., Stroulia, E., Liu, L.: Virtualgym: a kinect-based system for seniors exercising at home. Entertainment Comput. 27, 60–72 (2018). https://doi.org/10.1007/978-3-658-07141-7_11

    Article  Google Scholar 

  9. Gómez-Portes, C., Lacave, C., Molina, A., Vallejo, D., Schez-Sobrino, S.: Personalising exergames for the physical rehabilitation of children affected by spine pain. In: Proceedings 22nd International Conference on Enterprise Information Systems(ICEIS 2020), vol. 2, pp. 533–543 (2020)

    Google Scholar 

  10. González, C.S., Toledo, P., Padrón, M., Santos, E., Cairos, M.: TANGO:H: creating active educational games for hospitalized children. In: Casillas, J., Martínez-López, F., Vicari, R., De la Prieta, F. (eds.) Management Intelligent Systems, pp. 135–142. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-319-00569-0_17

  11. González, C.S.G., del Río, N.G., Adelantado, V.N.: Exploring the benefits of using gamification and videogames for physical exercise: a review of state of art. IJIMAI 5(2), 46–52 (2018). https://doi.org/10.9781/ijimai.2018.03.005

    Article  Google Scholar 

  12. González-González, C.S., Toledo-Delgado, P.A., Muñoz-Cruz, V., Torres-Carrion, P.V.: Serious games for rehabilitation: gestural interaction in personalized gamified exercises through a recommender system. J. Biomed. Inf. 97, 103266 (2019). https://doi.org/10.1016/j.jbi.2019.103266

    Article  Google Scholar 

  13. Hardy, S., Dutz, T., Wiemeyer, J., Göbel, S., Steinmetz, R.: Framework for personalized and adaptive game-based training programs in health sport. Multimedia Tools Appl. 74(14), 5289–5311 (2014). https://doi.org/10.1007/s11042-014-2009-z

    Article  Google Scholar 

  14. Jones, M., Stratton, G., Reilly, T., Unnithan, V.: A school-based survey of recurrent non-specific low-back pain prevalence and consequences in children. Health Educ. Res. 19(3), 284–289 (2004). https://doi.org/10.1093/her/cyg025

    Article  Google Scholar 

  15. Katajapuu, N., et al.: Benefits of exergame exercise on physical functioning of elderly people. In: 2017 8th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), pp. 000085–000090. IEEE (2017). https://doi.org/10.1109/CogInfoCom.2017.8268221

  16. König, I.R., Fuchs, O., Hansen, G., von Mutius, E., Kopp, M.V.: What is precision medicine? Eur. Respir. J. 50(4), 1700391 (2017). https://doi.org/10.1183/13993003.00391-2017

    Article  Google Scholar 

  17. Lai, C.L., Huang, Y.L., Liao, T.K., Tseng, C.M., Chen, Y.F., Erdenetsogt, D.: A microsoft kinect-based virtual rehabilitation system to train balance ability for stroke patients. In: 2015 International Conference on Cyberworlds (CW), pp. 54–60. IEEE (2015). https://doi.org/10.1109/CW.2015.44

  18. Li, B., Maxwell, M., Leightley, D., Lindsay, A., Johnson, W., Ruck, A.: Development of exergame-based virtual trainer for physical therapy using kinect. In: Schouten, B., Fedtke, S., Schijven, M., Vosmeer, M., Gekker, A. (eds.) Games for Health 2014, pp. 79–88. Springer, Wiesbaden (2014). https://doi.org/10.1007/978-3-658-07141-7_11

    Chapter  Google Scholar 

  19. Matallaoui, A., Koivisto, J., Hamari, J., Zarnekow, R.: How effective is “exergamification"? a systematic review on the effectiveness of gamification features in exergames. In: Proceedings of the 50th Hawaii International Conference on System Sciences (2017). https://doi.org/10.24251/HICSS.2017.402

  20. McCallum, S.: Gamification and serious games for personalized health. In: pHealth, pp. 85–96. IOS Press (2012). https://doi.org/10.3233/978-1-61499-069-7-85

  21. McCambridge, J., Witton, J., Elbourne, D.R.: Systematic review of the hawthorne effect: new concepts are needed to study research participation effects. J. Clin. Epidemiol 67(3), 267–277 (2014). https://doi.org/10.1016/j.jclinepi.2013.08.015

    Article  Google Scholar 

  22. Mobini, A., Behzadipour, S., Saadat Foumani, M.: Accuracy of kinect’s skeleton tracking for upper body rehabilitation applications. Disabil. Rehabil. Assist Technol. 9(4), 344–352 (2014). https://doi.org/10.3109/17483107.2013.805825

    Article  Google Scholar 

  23. Mousavi Hondori, H., Khademi, M.: A review on technical and clinical impact of microsoft kinect on physical therapy and rehabilitation. J. Med. Eng. 2014, 1–16 (2014)

    Article  Google Scholar 

  24. Müller, S.A., Vavken, P., Pagenstert, G.: Simulated activity but real trauma: a systematic review on nintendo wii injuries based on a case report of an acute anterior cruciate ligament rupture. Medicine 94(12), e648 (2015). https://doi.org/10.1097/MD.0000000000000648

    Article  Google Scholar 

  25. Murray, C.J., et al.: Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380(9859), 2197–2223 (2012). https://doi.org/10.1016/S0140-6736(12)61689-4

    Article  Google Scholar 

  26. Palacios-Navarro, G., García-Magariño, I., Ramos-Lorente, P.: A kinect-based system for lower limb rehabilitation in Parkinson’s disease patients: a pilot study. J. Med. Syst. 39(9), 1–10 (2015). https://doi.org/10.1007/s10916-015-0289-0

    Article  Google Scholar 

  27. Paraskevopoulos, I.T., Tsekleves, E., Craig, C., Whyatt, C., Cosmas, J.: Design guidelines for developing customised serious games for Parkinson’s disease rehabilitation using bespoke game sensors. Entertainment Comput. 5(4), 413–424 (2014). https://doi.org/10.1016/j.entcom.2014.10.006

    Article  Google Scholar 

  28. Pérez-Munoz, A., Ingavélez-Guerra, P., Robles-Bykbaev, Y.: New approach of serious games in ludic complements created for rehabilitation therapies in children with disabilities using kinect. In: 2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), pp. 1–4. IEEE (2018). https://doi.org/10.1109/INTERCON.2018.8526464

  29. Pirovano, M., Surer, E., Mainetti, R., Lanzi, P.L., Borghese, N.A.: Exergaming and rehabilitation: a methodology for the design of effective and safe therapeutic exergames. Entertainment Comput. 14, 55–65 (2016). https://doi.org/10.1016/j.entcom.2015.10.002

    Article  Google Scholar 

  30. Robinet, F., Arnaud, R., Parisi, T., Cozzi, P.: gltf: designing an open-standard runtime asset format. GPU Pro 5, 375–392 (2014)

    Article  Google Scholar 

  31. Sawyer, B., Smith, P.: Serious games taxonomy. In: Slides from the Serious Games Summit at the Game Developers Conference, vol. 5 (2008)

    Google Scholar 

  32. Semrau, M., et al.: Strengthening mental health systems in low-and middle-income countries: the emerald programme. BMC Med. 13(1), 79 (2015). https://doi.org/10.1186/s12916-015-0309-4

    Article  MathSciNet  Google Scholar 

  33. Shull, F., Singer, J., Sjøberg, D.I.: Guide to Advanced Empirical Software Engineering. Springer, Heidelberg (2007). https://doi.org/10.1007/978-1-84800-044-5

    Book  Google Scholar 

  34. Sparks, D.A., Coughlin, L.M., Chase, D.M.: Did too much wii cause your patient’s injury? motion-controlled game consoles like wii may be used to play virtual sports, but the injuries associated with them are real. Here’s what to watch for-and a handy table linking specific games to particular injuries. J. Fam. Pract. 60(7), 404–410 (2011)

    Google Scholar 

  35. Sweller, J., Van Merrienboer, J.J., Paas, F.G.: Cognitive architecture and instructional design. Educ. Psychol. Rev. 10(3), 251–296 (1998). https://doi.org/10.1023/A:1022193728205

    Article  Google Scholar 

  36. Webster, D., Celik, O.: Systematic review of kinect applications in elderly care and stroke rehabilitation. J. Neuroeng. Rehabil 11(1), 108 (2014). https://doi.org/10.1186/1743-0003-11-108

    Article  Google Scholar 

  37. Wiemeyer, J., et al.: Recommendations for the optimal design of exergame interventions for persons with disabilities: challenges, best practices, and future research. Games Health J. 4(1), 58–62 (2015). https://doi.org/10.1089/g4h.2014.0078

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by Instituto de Salud Carlos III, grant number DTS18/00122, co-funded by the European Regional Development Fund/European Social Fund “Investing in your future”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Gómez-Portes .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 A Description of the Evaluated Items

See Table 8.

Table 8. Description of the evaluated items.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gómez-Portes, C., Lacave, C., Molina, A.I., Vallejo, D., Sánchez-Sobrino, S. (2021). A Modern Approach to Personalize Exergames for the Physical Rehabilitation of Children Suffering from Lumbar Spine. In: Filipe, J., Śmiałek, M., Brodsky, A., Hammoudi, S. (eds) Enterprise Information Systems. ICEIS 2020. Lecture Notes in Business Information Processing, vol 417. Springer, Cham. https://doi.org/10.1007/978-3-030-75418-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75418-1_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75417-4

  • Online ISBN: 978-3-030-75418-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics