Skip to main content

Quantified Analysis of Security Issues and Its Mitigation in Blockchain Using Game Theory

  • Conference paper
  • First Online:
Computational Intelligence in Communications and Business Analytics (CICBA 2021)

Abstract

Storing data in the Blockchain is indeed one of the good security measures for data. However, blockchain itself could be under different types of security threats. The mining of the block into the longest chain is a constrained task. Typically, the nodes having high investments are selected as potential miners in the blockchain. A miner or a pool of miners is assigned for this mining job. The challenge lies in working with the honest miners against the continuous negative influence of dishonest miners. There have been considerable efforts in the existing literature that tries to overcome such security threats. Game theory is used and incorporated towards this by many researchers. This manuscript aims to analyze different security threats of blockchain mining and the possible approaches that have claimed to overcome these. We also analyzed and correlated some of the selected well-cited solution approaches that uses game theory and presented a comparative performance analysis among those.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pindyck, R.S., Rubinfeld, D.L.: Microeconomics, 8th edn. The Pearson Series in Economics (2013). ISBN-13: 978-0-13-285712-3

    Google Scholar 

  2. Gupta, N.: Security and privacy issues of blockchain technology. In: Kim, S., Deka, G.C. (eds.) Advanced Applications of Blockchain Technology, pp. 207–226. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-8775-3_10

    Chapter  Google Scholar 

  3. Singh, R., Dwivedi, A., Srivastava, G., et al.: A game theoretic analysis of resource mining in blockchain. Cluster Comput. 23(3), 2035–2046 (2020). https://doi.org/10.1007/s10586-020-03046-w

    Article  Google Scholar 

  4. Johnson, B., Laszka, A., Grossklags, J., Vasek, M., Moore, T.: Game-theoretic analysis of DDoS attacks against bitcoin mining pools. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 72–86. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1_6

    Chapter  Google Scholar 

  5. Nojoumian, M., Golchubian, A., Njilla, L., Kwiat, K., Kamhoua, C.: Incentivizing blockchain miners to avoid dishonest mining strategies by a reputation-based paradigm. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) Intelligent Computing: Proceedings of the 2018 Computing Conference, Volume 2, pp. 1118–1134. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01177-2_81

    Chapter  Google Scholar 

  6. Laszka, A., Johnson, B., Grossklags, J.: When bitcoin mining pools run dry. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) Financial Cryptography and Data Security, pp. 63–77. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-9_5

    Chapter  MATH  Google Scholar 

  7. Xu, D., Xiao, L., Sun, L., Lei, M.: Game theoretic study on blockchain based secure edge networks. In: IEEE/CIC International Conference on Communications in China (ICCC), Qingdao, pp. 1–5. IEEE (2017). https://doi.org/10.1109/ICCChina.2017.8330529

  8. Alzahrani, N., Bulusu, N.: Towards True decentralization: a blockchain consensus protocol based on game theory and randomness. In: Bushnell, L., Poovendran, R., Başar, T. (eds.) Decision and Game Theory for Security: 9th International Conference, GameSec 2018, Seattle, WA, USA, October 29–31, 2018, Proceedings, pp. 465–485. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01554-1_27

    Chapter  Google Scholar 

  9. Chen, L., et al.: The game among bribers in a smart contract system. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 294–307. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8_20

    Chapter  Google Scholar 

  10. Xuan, S., Zheng, L., Chung, I., Wang, W., Man, D., Du, X., et al.: An incentive mechanism for data sharing based on blockchain with smart contracts. Comput. Electr. Eng. 83, 106587 (2020). https://doi.org/10.1016/j.compeleceng.2020.106587,Elsevier

    Article  Google Scholar 

  11. Bigi, G., Bracciali, A., Meacci, G., Tuosto, E.: Validation of decentralised smart contracts through game theory and formal methods. In: Bodei, C., Ferrari, G., Priami, C. (eds.) Programming Languages with Applications to Biology and Security, pp. 142–161. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25527-9_11

    Chapter  MATH  Google Scholar 

  12. Tsabary, I., Eyal, I.: The gap game. In: 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS). ACM, USA, Canada (2018). https://doi.org/10.1145/3243734.3243737

  13. https://drive.google.com/drive/folders/1aLM7MmyEwEmx_NzCfAMIn4trd0Bl62fp?usp=sharing

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashis Kumar Samanta .

Editor information

Editors and Affiliations

Annexure 1

Annexure 1

1.1 Formalism in the Model Proposed by B. Johnson, A. Laszka et al. [4]

The payoff is defined for B and S of DDoS attack and computation is

Table 3. The pay-off matrix of mining of B and S
Table 4. Payoff Matrix for B and S with Imperfect DDoS and Linear Costs

1.2 Formalism in the Model Proposed by B. Johnson, A. Laszka et al. [6]

The Short term policy The calculated utility function of B and S are \(U_{B}^{\left( k \right)}\) and \(U_{S}^{\left( k \right)}\) respectively in kth iteration are given by the equn

$$ U_{B}^{\left( k \right)} { } = \frac{{S_{B}^{\left( k \right)} \cdot \left( {1 - a_{S}^{\left( k \right)} } \right) }}{{1 - S_{B}^{\left( k \right)} \cdot a_{S}^{\left( k \right)} - S_{S}^{\left( k \right)} \cdot a_{B}^{\left( k \right)} }}{ } - {\text{ C}} \cdot a_{B}^{\left( k \right)} $$
(1a)
$$ U_{S}^{\left( k \right)} { } = \frac{{S_{S}^{\left( k \right)} \cdot \left( {1 - a_{B}^{\left( k \right)} } \right) }}{{1 - S_{S}^{\left( k \right)} \cdot a_{B}^{\left( k \right)} - S_{B}^{\left( k \right)} \cdot a_{S}^{\left( k \right)} }}{ } - {\text{ C}} \cdot a_{S}^{\left( k \right)} $$
(1b)

The Long term policy The calculated size of B and S are \(S_{B}^{{\left( {k + 1} \right)}}\) and \(S_{S}^{{\left( {k + 1} \right)}}\) respectively in kth iteration are given by the equn

  1. a)

    Migration of miner into B pool

    $$ S_{B}^{{\left( {k + 1} \right)}} { } = { }S_{B}^{\left( k \right)} + A_{B} \cdot [\left( {1 - { }S_{B}^{\left( k \right)} } \right) \cdot {\text{ M }} + S_{S}^{\left( k \right)} \cdot a_{B}^{\left( k \right)} \left( {1 - {\text{M}}} \right) $$
    (2a)
  1. b)

    Migration of miner out of B pool

    $$ S_{B}^{{\left( {k + 1} \right)}} { } = { }S_{B}^{\left( k \right)} - { }S_{B}^{\left( k \right)} \cdot { }\left( {1 - { }A_{B} } \right) \cdot \left[ {{\text{ M }} + \cdot a_{S}^{\left( k \right)} \left( {1 - {\text{M}}} \right)} \right] $$
    (2b)
  1. c)

    Migration of miner into S pool

    $$ S_{S}^{{\left( {k + 1} \right)}} { } = { }S_{S}^{\left( k \right)} + A_{S} \cdot [\left( {1 - { }S_{S}^{\left( k \right)} } \right) \cdot {\text{ M }} + S_{B}^{\left( k \right)} \cdot a_{S}^{\left( k \right)} \left( {1 - {\text{M}}} \right) $$
    (2c)
  1. d)

    Migration of miner out of S pool

    $$ S_{S}^{{\left( {k + 1} \right)}} { } = { }S_{S}^{\left( k \right)} - { }S_{S}^{\left( k \right)} \cdot { }\left( {1 - { }A_{S} } \right) \cdot \left[ {{\text{ M }} + \cdot a_{B}^{\left( k \right)} \left( {1 - {\text{M}}} \right)} \right] $$
    (2d)

In case of peaceful equilibrium where (\(a_{S, }\) \(a_{B}\)) = (0,0)

$$ {\text{C }} \ge { }\frac{{A_{B} A_{S} }}{{{\text{Min}}\left( {{\text{M}},1 - A_{S},1 - A_{B} } \right)}}. $$
(3a)

In case of one side attack equilibrium where (\(a_{S, }\) \(a_{B}\)) = (0,1)

$$ {\text{C}} \le \frac{{A_{B} A_{S} }}{{\left( {1 - A_{S} } \right)^{2} }}{ } \cdot {\text{ Min}}\left( {{\text{M}},1 - A_{S} } \right) $$
(3b)
$$ {\text{C}} \le \frac{{A_{B} A_{S} }}{{\left( {1 - A_{B} } \right)^{2} }}{ } \cdot {\text{ Min}}\left( {{\text{M}},1 - A_{B} } \right) $$
(3c)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Samanta, A.K., Sarkar, B.B., Chaki, N. (2021). Quantified Analysis of Security Issues and Its Mitigation in Blockchain Using Game Theory. In: Dutta, P., Mandal, J.K., Mukhopadhyay, S. (eds) Computational Intelligence in Communications and Business Analytics. CICBA 2021. Communications in Computer and Information Science, vol 1406. Springer, Cham. https://doi.org/10.1007/978-3-030-75529-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75529-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75528-7

  • Online ISBN: 978-3-030-75529-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics