Skip to main content

SoK: How (not) to Design and Implement Post-quantum Cryptography

  • Conference paper
  • First Online:
Topics in Cryptology – CT-RSA 2021 (CT-RSA 2021)

Abstract

Post-quantum cryptography has known a Cambrian explosion in the last decade. What started as a very theoretical and mathematical area has now evolved into a sprawling research field, complete with side-channel resistant embedded implementations, large scale deployment tests and standardization efforts. This study systematizes the current state of knowledge on post-quantum cryptography. Compared to existing studies, we adopt a transversal point of view and center our study around three areas: (i) paradigms, (ii) implementation, (iii) deployment. Our point of view allows to cast almost all classical and post-quantum schemes into just a few paradigms. We highlight trends, common methodologies, and pitfalls to look for and recurrent challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    (T2) implies (T3) with \(D(X) = U(X)\).

  2. 2.

    See for example https://www.bearssl.org/constanttime.html.

  3. 3.

    See https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/kSUKzDNc5ME.

  4. 4.

    See https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/QvhRo7T2OL8.

  5. 5.

    Known, formal analyses guarantees are closer to \(2^{-40}\) at 128-bit security.

References

  1. Aguilar, C., Gaborit, P., Lacharme, P., Schrek, J., Zemor, G.: Noisy Diffie-Hellman protocols. Rump session of PQCrypto (2010). https://www.yumpu.com/en/document/view/53051354/noisy-diffie-hellman-protocols

  2. Melchor, C.A., et al.: HQC. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  3. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: 28th ACM STOC, pp. 99–108. ACM Press, May 1996. https://doi.org/10.1145/237814.237838

  4. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: 29th ACM STOC, pp. 284–293. ACM Press, May 1997. https://doi.org/10.1145/258533.258604

  5. Alagic, G., et al.: status report on the second round of the NIST post-quantum cryptography standardization process. Technical report, NIST (2020)

    Google Scholar 

  6. Albrecht, M.R., Deo, A., Paterson, K.G.: Cold boot attacks on ring and module LWE keys under the NTT. IACR TCHES 2018(3), 173–213 (2018). https://doi.org/10.13154/tches.v2018.i3.173-213. https://tches.iacr.org/index.php/TCHES/article/view/7273. ISSN 2569–2925

  7. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015). http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml

  8. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_17

  9. Albrecht, M.R., et al.: Estimate all the LWE, NTRU schemes!. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_19

  10. Apon, D., Howe, J.: Attacks on NIST PQC 3rd round candidates. In: IACR Real World Crypto Symposium, January 2021. https://iacr.org/submit/files/slides/2021/rwc/rwc2021/22/slides.pdf

  11. Aragon, N., et al.: BIKE. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  12. Aranha, D.F., Orlandi, C., Takahashi, A., Zaverucha, G.: Security of Hedged Fiat-Shamir signatures under fault attacks. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 644–674. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_23

  13. Aumasson, J.-P., Endignoux, G.: Improving stateless hash-based signatures. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 219–242. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_12

  14. Backendal, M., Bellare, M., Sorrell, J., Sun, J.: The Fiat-Shamir Zoo: relating the security of different signature variants. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 154–170. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03638-6_10

  15. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9_2

  16. Barak, B., Mahmoody-Ghidary, M.: Merkle’s key agreement protocol is optimal: an \(O(n^2)\) attack on any key agreement from random oracles. J. Cryptol. 30(3), 699–734 (2017). https://doi.org/10.1007/s00145-016-9233-9

    Article  Google Scholar 

  17. Barthe, G., Belaïd, S., Espitau, T., Fouque, P.-A., Rossi, M., Tibouchi, M.: GALACTICS: Gaussian sampling for lattice-based constant-time implementation of cryptographic signatures, revisited. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS, pp. 2147–2164. ACM Press, November 2019. https://doi.org/10.1145/3319535.3363223

  18. Barthe, G., et al.: Masking the GLP lattice-based signature scheme at any order. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 354–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_12

  19. Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 495–526. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_17

  20. Baum, C., de Saint Guilhem, C.D., Kales, D., Orsini, E., Scholl, P., Zaverucha, G.: Banquet: short and fast signatures from AES. PKC (2021). https://eprint.iacr.org/2021/068

  21. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor searching with applications to lattice sieving. In: Krauthgamer, R., (ed.) SODA, pp. 10–24. SIAM (2016). https://doi.org/10.1137/1.9781611974331.ch2. https://doi.org/10.1137/1.9781611974331.ch2

  22. Van Beirendonck, M., D’Anvers, J.-P., Karmakar, A., Balasch, J., Verbauwhede, I.: A side-channel resistant implementation of SABER. Cryptology ePrint Archive, Report 2020/733 (2020). https://eprint.iacr.org/2020/733

  23. Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the error in computationally sound protocols? In: 38th FOCS, pp. 374–383. IEEE Computer Society Press, October 1997. https://doi.org/10.1109/SFCS.1997.646126

  24. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS, vol. 93, pp. 62–73. ACM Press, November 1993. https://doi.org/10.1145/168588.168596

  25. Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with RSA and Rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_34

  26. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography (2009). https://doi.org/10.1007/978-3-540-88702-7

  27. Bernstein, D.J., Yang, B.-Y.: Asymptotically faster quantum algorithms to solve multivariate quadratic equations. Cryptology ePrint Archive, Report 2017/1206 (2017). https://eprint.iacr.org/2017/1206

  28. Bernstein, D.J., et al.: Classic McEliece. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  29. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU Prime. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  30. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_15

  31. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe, P.: The SPHINCS\(^+\) signature framework. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (ed.) ACM CCS, pp. 2129–2146. ACM Press, November 2019. https://doi.org/10.1145/3319535.3363229

  32. Bert, P., Fouque, P.-A., Roux-Langlois, A., Sabt, M.: Practical implementation of ring-SIS/LWE based signature and IBE. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 271–291. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_13

  33. Bettale, L., Faugère, J.-C., Perret, L.: Solving polynomial systems over finite fields: improved analysis of the hybrid approach. In: ISSAC, pp. 67–74. ACM (2012)

    Google Scholar 

  34. Beullens, W.: Sigma protocols for MQ, PKP and SIS, and Fishy signature schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 183–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_7

  35. Beullens, W., Delpech de Saint Guilhem, C.: LegRoast: efficient post-quantum signatures from the Legendre PRF. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 130–150. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_8

  36. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_9

  37. Beullens, W., Preneel, B., Szepieniec, A.: Public key compression for constrained linear signature schemes. In: Cid, C., Jacobson Jr., M.J. (eds.) SAC. LNCS, vol. 11349, pp. 300–321. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-10970-7_14

  38. Beullens, W., Faugère, J.-C., Koussa, E., Macario-Rat, G., Patarin, J., Perret, L.: PKP-based signature scheme. In: Hao, F., Ruj, S., Sen Gupta, S. (eds.) INDOCRYPT 2019. LNCS, vol. 11898, pp. 3–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35423-7_1

  39. Bindel, N., et al.: qTESLA. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  40. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_17

  41. Bos, J.W., Friedberger, S., Martinoli, M., Oswald, E., Stam, M.: Assessing the feasibility of single trace power analysis of Frodo. In: Cid, C., Jacobson Jr., M.J. (eds.) SAC. LNCS, vol. 11349, pp. 216–234. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-10970-7_10

  42. Both, L., May, A.: Decoding linear codes with high error rate and its impact for LPN security. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 25–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_2

  43. Bruinderink, L.G., Pessl, P.: Differential fault attacks on deterministic lattice signatures. IACR TCHES 2018(3), 21–43 (2018). https://doi.org/10.13154/tches.v2018.i3.21-43. https://tches.iacr.org/index.php/TCHES/article/view/7267. ISSN 2569–2925

  44. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload - a cache attack on the BLISS lattice-based signature scheme. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 323–345. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2_16

  45. Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the security of the Winternitz one-time signature scheme. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 11. LNCS, vol. 6737, pp. 363–378. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21969-6_23

    Chapter  Google Scholar 

  46. Casanova, A., Faugère, J.-C., Macario-Rat, G., Patarin, J., Perret, L., Ryckeghem, J.: GeMSS. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  47. Castelnovi, L., Martinelli, A., Prest, T.: Grafting trees: a fault attack against the SPHINCS framework. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 165–184. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_8

  48. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_15

  49. Cayrel, P.-L., Colombier, B., Dragoi, V.-F., Menu, A., Bossuet, L.: Message-recovery laser fault injection attack on the classic Mceliece cryptosystem. In: EUROCRYPT (2021)

    Google Scholar 

  50. Chailloux, A., Debris-Alazard, T.: Tight and optimal reductions for signatures based on average trapdoor preimage sampleable functions and applications to code-based signatures. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 453–479. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_16

  51. Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum collision search algorithm and implications on symmetric cryptography. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 211–240. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_8

  52. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS, pp. 1825–1842. ACM Press, October/November 2017. https://doi.org/10.1145/3133956.3133997

  53. Chen, M.-S., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: From 5-Pass \(\cal{MQ}\)-based identification to \(\cal{MQ}\)-based signatures. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 135–165. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_5

  54. Chen, Y., Genise, N., Mukherjee, P.: Approximate trapdoors for lattices and smaller hash-and-sign signatures. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 3–32. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_1

  55. Chung, C.-M.M., Hwang, V., Kannwischer, M.J., G., Seiler, M.J., Shih, C.-J., Yang, B.-Y.: NTT multiplication for NTT-unfriendly rings. Cryptology ePrint Archive, Report 2020/1397 (2020). https://eprint.iacr.org/2020/1397

  56. Cooper, D., Apon, D., Dang, Q., Davidson, M., Dworkin, M., Miller, C.: Recommendation for stateful hash-based signature schemes (2020). https://doi.org/10.6028/NIST.SP.800-208

  57. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptol. 10(4), 233–260 (1997). https://doi.org/10.1007/s001459900030

    Article  MathSciNet  MATH  Google Scholar 

  58. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_14

  59. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_10

  60. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_27

  61. Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report 2006/291 (2006). http://eprint.iacr.org/2006/291

  62. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information: attacks and concrete security estimation. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 329–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_12

  63. Damgård, I.B.: On the randomness of Legendre and Jacobi sequences. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 163–172. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_13

  64. D’Anvers, J.-P., Rossi, M., Virdia, F.: (One) failure is not an option: bootstrapping the search for failures in lattice-based encryption schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 3–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_1

  65. D’Anvers, J.-P., Vercauteren, F., Verbauwhede, I.: The impact of error dependencies on ring/Mod-LWE/LWR based schemes. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 103–115. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_6

  66. D’Anvers, J.-P., Guo, Q., Johansson, T., Nilsson, A., Vercauteren, F., Verbauwhede, I.: Decryption failure attacks on IND-CCA secure lattice-based schemes. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 565–598. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_19

  67. D’Anvers, J.-P., Karmakar, A., Roy, S.S., Vercauteren, F.: SABER. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  68. D’Anvers, J.-P., Tiepelt, M., Vercauteren, F., Verbauwhede, I.: Timing attacks on error correcting codes in post-quantum schemes. In: Bilgin, B., Petkova-Nikova, S., Rijmen, V. (eds.) TIS@CCS, pp. 2–9. ACM (2019). https://doi.org/10.1145/3338467.3358948. https://doi.org/10.1145/3338467.3358948

  69. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_26

  70. De Feo, L., Kieffer, J., Smith, B.: Towards practical key exchange from ordinary isogeny graphs. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 365–394. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_14

  71. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: compact post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 64–93. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_3

  72. de Saint Guilhem, C.D., De Meyer, L., Orsini, E., Smart, N.P.: BBQ: using AES in picnic signatures. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 669–692. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5_27

  73. Debris-Alazard, T., Sendrier, N., Tillich, J.-P.: Wave: a new family of trapdoor one-way preimage sampleable functions based on codes. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 21–51. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_2

  74. Debris-Alazard, T., Tillich, J.-P.: Two attacks on rank metric code-based schemes: RankSign and an IBE scheme. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 62–92. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_3

  75. Degabriele, J.P., Lehmann, A., Paterson, K.G., Smart, N.P., Strefler, M.: On the joint security of encryption and signature in EMV. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 116–135. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27954-6_8

  76. Diem, C.: The XL-algorithm and a conjecture from commutative algebra. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 323–337. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2_23

  77. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  78. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based on the learning with errors problem. Cryptology ePrint Archive, Report 2012/688 (2012). http://eprint.iacr.org/2012/688

  79. Ding, J., Chen, M.-S., Petzoldt, A., Schmidt, D., Yang, B.-Y.: Rainbow. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  80. Dinur, I., Kales, D., Promitzer, A., Ramacher, S., Rechberger, C.: Linear equivalence of block ciphers with partial non-linear layers: application to LowMC. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 343–372. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_12

  81. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_2

  82. Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: cryptanalysis of NTRUSign countermeasures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 433–450. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_27

  83. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  84. Espitau, T., Fouque, P.-A., Gérard, B., Tibouchi, M.: Side-channel attacks on BLISS lattice-based signatures: exploiting branch tracing against strongSwan and electromagnetic emanations in microcontrollers. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS, pp. 1857–1874. ACM Press, October/November 2017. https://doi.org/10.1145/3133956.3134028

  85. fail0verflow. Console Hacking 2010: PS3 Epic Fail. In: 27th Chaos Communications Congress (2010)

    Google Scholar 

  86. Faugère, J.C.: A new efficient algorithm for computing gröbner bases without reduction to zero (f5). In: ISSAC 2002, pp. 75–83. Association for Computing Machinery, New York (2002). ISBN 1581134843. https://doi.org/10.1145/780506.780516

  87. Faugère, J.-C., Gauthier-Umaña, V., Otmani, A., Perret, L., Tillich, J.-P.: A distinguisher for high-rate Mceliece cryptosystems. IEEE Trans. Inf. Theory 59(10), 6830–6844 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  88. Feo, L.D.: Mathematics of isogeny based cryptography (2017)

    Google Scholar 

  89. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

    MathSciNet  MATH  Google Scholar 

  90. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

  91. Fluhrer, S.: Cryptanalysis of ring-LWE based key exchange with key share reuse. Cryptology ePrint Archive, Report 2016/085 (2016). http://eprint.iacr.org/2016/085

  92. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-order side channel analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19574-7_18

  93. Gaborit, P., Ruatta, O., Schrek, J., Zémor, G.: RankSign: an efficient signature algorithm based on the rank metric. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 88–107. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4_6

  94. Galbraith, S., Panny, L., Smith, B., Vercauteren, F.: Quantum equivalence of the DLP and CDHP for group actions. Cryptology ePrint Archive, Report 2018/1199 (2018). https://eprint.iacr.org/2018/1199

  95. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_3

  96. Gellersen, T., Seker, O., Eisenbarth, T.: Differential power analysis of the picnic signature scheme. Cryptology ePrint Archive, Report 2020/267 (2020). https://eprint.iacr.org/2020/267

  97. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press, May 2008. https://doi.org/10.1145/1374376.1374407

  98. Gentry, C., Jonsson, J., Stern, J., Szydlo, M.: Cryptanalysis of the NTRU signature scheme (NSS) from Eurocrypt 2001. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 1–20. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_1

  99. Goldreich, O.: Two remarks concerning the Goldwasser-Micali-Rivest signature scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 104–110. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_8

  100. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052231

  101. Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: MPC-friendly symmetric key primitives. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS, pp. 430–443. ACM Press, October 2016. https://doi.org/10.1145/2976749.2978332

  102. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: 28th ACM STOC, pp. 212–219. ACM Press, May 1996. https://doi.org/10.1145/237814.237866

  103. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_31

  104. Guo, Q., Johansson, T., Nilsson, A.: A key-recovery timing attack on post-quantum primitives using the Fujisaki-Okamoto transformation and its application on FrodoKEM. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 359–386. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_13

  105. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with CCA security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 789–815. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_29

  106. Guo, Q., Johansson, T., Yang, J.: A novel CCA attack using decryption errors against LAC. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 82–111. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_4

  107. Guo, S., Kamath, P., Rosen, A., Sotiraki, K.: Limits on the efficiency of (Ring) LWE based non-interactive key exchange. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 374–395. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_13

  108. Hall, C., Goldberg, I., Schneier, B.: Reaction attacks against several public-key cryptosystems. In: Varadharajan, V., Yi, M. (eds.) ICICS 99. LNCS, vol. 1726, pp. 2–12. Springer, Heidelberg (1999)

    Google Scholar 

  109. Hamburg, M.: Three Bears. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  110. Hoffstein, J., Pipher, J., Silverman, J.H.: NSS: An NTRU lattice-based signature scheme. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 211–228. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_14

  111. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

  112. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36563-X_9

  113. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12

  114. Howe, J., Prest, T., Apon, D.: SOK: how (not) to design and implement post-quantum cryptography. Cryptology ePrint Archive, Report 2021 (2021). https://eprint.iacr.org/2021/

  115. Paquin, C., Stebila, D., Tamvada, G.: Benchmarking post-quantum cryptography in TLS. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 72–91. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_5

  116. Howe, J., Martinoli, M., Oswald, E., Regazzoni, F.: Optimised Lattice-Based Key Encapsulation in Hardware. In: NIST’s Second PQC Standardization Conference (2019)

    Google Scholar 

  117. Howgrave-Graham, N., et al.: The impact of decryption failures on the security of NTRU encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 226–246. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_14

  118. Huang, W.-L., Chen, J.-P., Yang, B.-Y.: Power Analysis on NTRU Prime. IACR TCHES 2020(1) (2020). ISSN 2569–2925

    Google Scholar 

  119. Hülsing, A.: W-OTS+ - shorter signatures for hash-based signature schemes. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 173–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38553-7_10

  120. Hulsing, A., et al.: SPHINCS+. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  121. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 21–30. ACM Press, June 2007. https://doi.org/10.1145/1250790.1250794

  122. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_2

  123. Jao, D., et al.: SIKE. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  124. Jaques, S., Schanck, J.M.: Quantum cryptanalysis in the RAM model: claw-finding attacks on SIKE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 32–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_2

  125. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing grover oracles for quantum key search on AES and LowMC. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 280–310. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_10

  126. Joux, A., Vitse, V.: A crossbred algorithm for solving Boolean polynomial systems. Cryptology ePrint Archive, Report 2017/372 (2017). http://eprint.iacr.org/2017/372

  127. Kales, D., Zaverucha, G.: An attack on some signature schemes constructed from five-pass identification schemes. Cryptology ePrint Archive, Report 2020/837 (2020). https://eprint.iacr.org/2020/837

  128. Kannwischer, M.J., Pessl, P., Primas, R.: Single-trace attacks on Keccak. IACR TCHES 2020(3), 243–268 (2020). https://doi.org/10.13154/tches.v2020.i3.243-268. https://tches.iacr.org/index.php/TCHES/article/view/8590. ISSN 2569–2925

  129. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS, pp. 525–537. ACM Press, October 2018. https://doi.org/10.1145/3243734.3243805

  130. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005). https://doi.org/10.1137/S0097539703436345

    Article  MathSciNet  MATH  Google Scholar 

  131. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem. In: Severini, S., Brandão, F.G.S.L. (eds.) TQC, volume 22 of LIPIcs, pp. 20–34. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2013). https://doi.org/10.4230/LIPIcs.TQC.2013.20

  132. Laarhoven, T., Mosca, M., van de Pol, J.: Finding shortest lattice vectors faster using quantum search. Des. Codes Cryptogr. 77(2–3), 375–400 (2015). https://doi.org/10.1007/s10623-015-0067-5. https://doi.org/10.1007/s10623-015-0067-5

  133. Lahr, N., Niederhagen, R., Petri, R., Samardjiska, S.: Side channel information set decoding using iterative chunking. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 881–910. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_29

  134. Lamport, L.: Constructing digital signatures from a one-way function. Technical report SRI-CSL-98, SRI International Computer Science Laboratory, October 1979

    Google Scholar 

  135. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Cryptogr. 75(3), 565–599 (2015). https://doi.org/10.1007/s10623-014-9938-4. https://doi.org/10.1007/s10623-014-9938-4

  136. Liu, F., Isobe, T., Meier, W. Cryptanalysis of full LowMC and LowMC-M with algebraic techniques. Cryptology ePrint Archive, Report 2020/1034 (2020). https://eprint.iacr.org/2020/1034

  137. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_35

  138. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

  139. Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-DILITHIUM. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  140. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. JPL DSN Progress Report 44, 05 (1978)

    Google Scholar 

  141. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_21

  142. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

  143. Migliore, V., Gérard, B., Tibouchi, M., Fouque, P.-A.: Masking dilithium. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 344–362. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2_17

  144. Mus, K., Islam, S., Sunar, B.: QuantumHammer: a practical hybrid attack on the LUOV signature scheme. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 1071–1084. ACM Press, November 2020. https://doi.org/10.1145/3372297.3417272

  145. Naehrig, M., et al.: FrodoKEM. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  146. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and NTRU signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 271–288. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_17

  147. NIST: Submission requirements and evaluation criteria for the post-quantum cryptography standardization process (2016). https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

  148. Oswald, E., Mangard, S.: Template attacks on masking–resistance is futile. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg (2006). https://doi.org/10.1007/11967668_16

  149. Park, A., Shim, K.-A., Koo, N., Han, D.-G.: Side-channel attacks on post-quantum signature schemes based on multivariate quadratic equations. IACR TCHES 2018(3), 500–523 (2018). https://doi.org/10.13154/tches.v2018.i3.500-523. https://tches.iacr.org/index.php/TCHES/article/view/7284. ISSN 2569–2925

  150. Paterson, K.G., Villanueva-Polanco, R.: Cold boot attacks on NTRU. In: Patra, A., Smart, N.P. (eds.) INDOCRYPT 2017. LNCS, vol. 10698, pp. 107–125. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71667-1_6

  151. Peikert, C.: A decade of lattice cryptography. Cryptology ePrint Archive, Report 2015/939 (2015). http://eprint.iacr.org/2015/939

  152. Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 463–492. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_16

  153. Peikert, C.: How (Not) to instantiate ring-LWE. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 411–430. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9_22

  154. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4_12

  155. Peikert, C., Pepin, Z.: Algebraically structured LWE, revisited. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 1–23. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_1

  156. Perrig, A.: The BiBa one-time signature and broadcast authentication protocol. In: Reiter, M.K., Samarati, P. (eds.) ACM CCS, pp. 28–37. ACM Press, November 2001. https://doi.org/10.1145/501983.501988

  157. Pessl, P., Bruinderink, L.G., Yarom, Y.: To BLISS-B or not to be: attacking strongSwan’s implementation of post-quantum signatures. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS, pp. 1843–1855. ACM Press, October/November 2017. https://doi.org/10.1145/3133956.3134023

  158. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_33

  159. Polanco, R.L.V.: Cold Boot Attacks on Post-Quantum Schemes. Ph.D. thesis, Royal Holloway, University of London (2018)

    Google Scholar 

  160. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 8(5), 5–9 (1962). https://doi.org/10.1109/TIT.1962.1057777

    Article  MathSciNet  Google Scholar 

  161. Prest, T., et al.: FALCON. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  162. Ravi, P., Jhanwar, M.P., Howe, J., Chattopadhyay, A., Bhasin, S.: Exploiting determinism in lattice-based signatures: practical fault attacks on PQM4 implementations of nist candidates. In: AsiaCCS, pp. 427–440 (2019)

    Google Scholar 

  163. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May 2005. https://doi.org/10.1145/1060590.1060603

  164. Reyzin, L., Reyzin, N.: Better than BiBa: short one-time signatures with fast signing and verifying. In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 144–153. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45450-0_11

  165. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. Assoc. Comput. Machinery 21(2), 120–126 (1978)

    MathSciNet  MATH  Google Scholar 

  166. Rossi, M., Hamburg, M., Hutter, M., Marson, M.E.: A side-channel assisted cryptanalytic attack against QcBits. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 3–23. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_1

  167. Rostovtsev, A., Stolbunov, A.: Public-Key Cryptosystem Based On Isogenies. Cryptology ePrint Archive, Report 2006/145 (2006). http://eprint.iacr.org/2006/145

  168. Sakumoto, K., Shirai, T., Hiwatari, H.: On provable security of UOV and HFE signature schemes against chosen-message attack. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 68–82. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_5

  169. Sakumoto, K., Shirai, T., Hiwatari, H.: Public-key identification schemes based on multivariate quadratic polynomials. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 706–723. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_40

  170. Samardjiska, S., Santini, P., Persichetti, E., Banegas, G.: A reaction attack against cryptosystems based on LRPC codes. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp. 197–216. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7_10

  171. Samardjiska, S., Chen, M.-S., Hulsing, A., Rijneveld, J., Schwabe, P.: MQDSS. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  172. Samwel, N., Batina, L., Bertoni, G., Daemen, J., Susella, R.: Breaking Ed25519 in WolfSSL. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 1–20. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_1

  173. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_22

  174. Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66, 181–199 (1994). https://doi.org/10.1007/BF01581144. https://doi.org/10.1007/BF01581144

  175. Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  176. Shamir, A.: An efficient identification scheme based on permuted kernels (extended abstract). In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 606–609. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_54

  177. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th FOCS, pp. 124–134. IEEE Computer Society Press, November 1994. https://doi.org/10.1109/SFCS.1994.365700

  178. Sim, B.-Y., Kwon, J., Choi, K.Y., Cho, J., Park, A., Han, D.-G.: Novel side-channel attacks on quasi-cyclic code-based cryptography. IACR TCHES 2019(4), 180–212 (2019). https://doi.org/10.13154/tches.v2019.i4.180-212. https://tches.iacr.org/index.php/TCHES/article/view/8349. ISSN 2569–2925

  179. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_2

  180. Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory 42(6), 1757–1768 (1996). https://doi.org/10.1109/18.556672. https://doi.org/10.1109/18.556672

  181. Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_32

  182. Canto Torres, R., Sendrier, N.: Analysis of information set decoding for a sub-linear error weight. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 144–161. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_10

  183. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic applications. J. Cryptol. 12(1), 1–28 (1999). https://doi.org/10.1007/PL00003816

    Article  MathSciNet  MATH  Google Scholar 

  184. Verhulst, K.: Power Analysis and Masking of Saber. Master’s thesis, KU Leuven, Belgium (2019)

    Google Scholar 

  185. Véron, P.: Improved identification schemes based on error-correcting codes. Appl. Algebra Eng. Commun. Comput. 8(1), 57–69 (1996). https://doi.org/10.1007/s002000050053. https://doi.org/10.1007/s002000050053

  186. Yang, B.-Y., Chen, J.-M.: All in the XL family: theory and practice. In: Park, C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Heidelberg (2005). https://doi.org/10.1007/11496618_7

  187. Yarom, Y., Falkner, K., FLUSH+RELOAD: a high resolution, low noise, L3 cache side-channel attack. In: Fu, K., Jung, J. (eds.) USENIX Security, pp. 719–732. USENIX Association, August 2014

    Google Scholar 

  188. Zaverucha, G., et al.: Picnic. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  189. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum Inf. Comput. 15(7&8), 557–567 (2015)

    MathSciNet  Google Scholar 

  190. Zhang, Z., et al.: NTRUEncrypt. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Prest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Howe, J., Prest, T., Apon, D. (2021). SoK: How (not) to Design and Implement Post-quantum Cryptography. In: Paterson, K.G. (eds) Topics in Cryptology – CT-RSA 2021. CT-RSA 2021. Lecture Notes in Computer Science(), vol 12704. Springer, Cham. https://doi.org/10.1007/978-3-030-75539-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75539-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75538-6

  • Online ISBN: 978-3-030-75539-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics