Abstract
This work addresses texture synthesis by relying on the local representation of images through their patch distributions. The main contribution is a framework that imposes the patch distributions at several scales using optimal transport. This leads to two formulations. First, a pixel-based optimization method is proposed, based on discrete optimal transport. We show that it generalizes a well-known texture optimization method that uses iterated patch nearest-neighbor projections, while avoiding some of its shortcomings. Second, in a semi-discrete setting, we exploit differential properties of Wasserstein distances to learn a fully convolutional network for texture generation. Once estimated, this network produces realistic and arbitrarily large texture samples in real time. By directly dealing with the patch distribution of synthesized images, we also overcome limitations of state-of-the-art techniques, such as patch aggregation issues that usually lead to low frequency artifacts (e.g. blurring) in traditional patch-based approaches, or statistical inconsistencies (e.g. color or patterns) in machine learning approaches.
This study has been carried out with financial support from the French Research Agency through the GOTMI project (ANR-16-CE33-0010-01). The authors also acknowledge the French GdR ISIS through the support of the REMOGA project.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For color images we generally have \(d=3\) and \({\mathcal K}= [0,1]^3\).
References
Bergmann, U., Jetchev, N., Vollgraf, R.: Learning texture manifolds with the periodic spatial gan. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 469–477. JMLR.org (2017)
Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 60–65. IEEE (2005)
Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: IEEE International Conference on Computer Vision, p. 1033 (1999)
Galerne, B., Leclaire, A., Rabin, J.: A texture synthesis model based on semi-discrete optimal transport in patch space. SIAM J. Imaging Sci. 11(4), 2456–2493 (2018)
Gatys, L., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks. In: NIPS, pp. 262–270 (2015)
Genevay, A., Cuturi, M., Peyré, G., Bach, F.: Stochastic optimization for large-scale optimal transport. In: Advances in Neural Information Processing Systems, pp. 3440–3448 (2016)
Gutierrez, J., Galerne, B., Rabin, J., Hurtut, T.: Optimal patch assignment for statistically constrained texture synthesis. In: Scale-Space and Variational Methods in Computer Vision (2017)
Houdard, A., Bouveyron, C., Delon, J.: High-dimensional mixture models for unsupervised image denoising (HDMI). SIAM J. Imaging Sci. 11(4), 2815–2846 (2018)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)
Kaspar, A., Neubert, B., Lischinski, D., Pauly, M., Kopf, J.: Self tuning texture optimization. Comput. Graph. Forum 34, 349–359 (2015)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2014)
Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture optimization for example-based synthesis. In: ACM SIGGRAPH 2005 Papers, pp. 795–802 (2005)
Lebrun, M., Buades, A., Morel, J.M.: A nonlocal bayesian image denoising algorithm. SIAM J. Imaging Sci. 6(3), 1665–1688 (2013)
Leclaire, A., Rabin, J.: A fast multi-layer approximation to semi-discrete optimal transport. In: Lellmann, J., Burger, M., Modersitzki, J. (eds.) SSVM 2019. LNCS, vol. 11603, pp. 341–353. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22368-7_27
Liu, G., Gousseau, Y., Xia, G.: Texture synthesis through convolutional neural networks and spectrum constraints. In: International Conference on Pattern Recognition (ICPR), pp. 3234–3239. IEEE (2016)
Santambrogio, F.: Optimal transport for applied mathematicians. Progr. Nonlinear Differ. Equ. Appl. 87 (2015)
Shaham, T.R., Dekel, T., Michaeli, T.: Singan: learning a generative model from a single natural image. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4570–4580 (2019)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.: Texture networks: feed-forward synthesis of textures and stylized images. In: Proceedings of the International Conference on Machine Learning, vol. 48, pp. 1349–1357 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Houdard, A., Leclaire, A., Papadakis, N., Rabin, J. (2021). Wasserstein Generative Models for Patch-Based Texture Synthesis. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2021. Lecture Notes in Computer Science(), vol 12679. Springer, Cham. https://doi.org/10.1007/978-3-030-75549-2_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-75549-2_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-75548-5
Online ISBN: 978-3-030-75549-2
eBook Packages: Computer ScienceComputer Science (R0)