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Abstract. We investigate what can be learned from translating numer-
ical algorithms into neural networks. On the numerical side, we con-
sider explicit, accelerated explicit, and implicit schemes for a general
higher order nonlinear diffusion equation in 1D, as well as linear multi-
grid methods. On the neural network side, we identify corresponding
concepts in terms of residual networks (ResNets), recurrent networks,
and U-nets. These connections guarantee Euclidean stability of specific
ResNets with a transposed convolution layer structure in each block. We
present three numerical justifications for skip connections: as time dis-
cretisations in explicit schemes, as extrapolation mechanisms for acceler-
ating those methods, and as recurrent connections in fixed point solvers
for implicit schemes. Last but not least, we also motivate uncommon
design choices such as nonmonotone activation functions. Our findings
give a numerical perspective on the success of modern neural network
architectures, and they provide design criteria for stable networks.

Keywords: numerical algorithms · partial differential equations · con-
volutional neural networks · nonlinear diffusion · stability

1 Introduction

The remarkable success of convolutional neural networks (CNNs) has triggered
many researchers to analyse their behaviour and to come up with mathematical
foundations and stability guarantees. One strategy consists of interpreting net-
works as approximations of evolution equations; see e.g. [3,22,23]. Then training
a network comes down to parameter identification of ordinary or partial differ-
ential equations (PDEs). This can be challenging, since it requires various model
assumptions: Without additional smoothness assumptions, the models may be-
come very complicated involving millions of parameters. Moreover, connecting
a discrete network to a continuous evolution equation involves ambiguous limit
assumptions: The same discrete model can approximate multiple evolution equa-
tions with different orders of consistency.
⋆ This work has received funding from the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and innovation programme (grant
agreement no. 741215, ERC Advanced Grant INCOVID).

http://arxiv.org/abs/2103.15419v2
https://doi.org/10.1007/978-3-030-75549-2_24


2 T. Alt et al.

We address these problems by following two guiding principles:

1. We refrain from the analytic strategy of translating a complex neural network
into a compact model, since it involves the discussed problems and only
analyses how a network is, but not how it should be. Instead we pursue a
synthetic approach: We translate successful concepts into networks. This is
easier, and it allows to understand how a network should be to guarantee
desirable qualities such as stability and efficiency.

2. Our concepts of choice are numerical algorithms rather than continuous mod-
els. This avoids ambiguities in the limit assumptions. Similar to neural ar-
chitectures, numerical algorithms can be applied to a multitude of models.
We believe that the design principles of modern neural networks realise a
small but powerful set of numerical strategies as a basis of their success.

Thus, we want to justify key components of neural architectures and derive novel
design principles by translating popular numerical algorithms into networks.

Our Contributions. As an exemplary starting point and a basis for explor-
ing different numerical algorithms, we consider a general evolution equation for
higher order nonlinear diffusion in 1D.

First we show that an explicit finite difference discretisation can be inter-
preted as a residual network (ResNet) [11]. This gives two central insights: The
diffusion flux function determines the activation function of the ResNet, and the
two convolutional filters follow a transposed structure. This motivates the use
of nonmonotone activation functions and allows us to guarantee stability in the
Euclidean norm for specific ResNets. Moreover, we identify the skip connections
in the ResNet as discrete time derivatives.

Additional interpretations of skip connections are obtained with alternative
numerical methods based on fast semi-iterative (FSI) accelerations of explicit
schemes [9] and on fixed point algorithms for fully implicit schemes. We show
that the latter ones can be regarded as recurrent neural networks [12].

Since multigrid methods [2] are efficient numerical methods for PDEs, it is
worthwhile to analyse them as well. We demonstrate that they have structural
connections to U-nets [20], shedding some light on their efficiency.

Our results do not only inspire general design criteria for neural networks as
well as stable architectures. They also provide structural insights into ResNets,
RNNs and U-nets from the perspective of numerical algorithms.

Related Work. Our philosophy to translate numerics into neural networks is
shared in [14,18]. Both works motivate additional skip connections in ResNets
from multistep schemes for ordinary differential equations. Our paper provides
alternative motivations via time discretisations, acceleration via extrapolation,
as well as fixed point schemes for implicit discretisations.

The stability of ResNets is studied from a differential equations perspective
in [21,22,27]. Particularly, Ruthotto and Haber [22] show stability in the Eu-
clidean norm for a specific form of residual networks. However, they require the
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activation function to be monotone. In contrast to their approach, our theory
allows nonmonotone activation functions.

Several works connect multigrid ideas and CNNs, e.g. to learn the restriction
and prolongation operators [8], or to couple feature channels for parameter re-
duction [6]. He and Xu [10] present a CNN architecture implementing multigrid
approaches, however without connecting it to a U-net. We on the other hand
present a direct correspondence between a simple multigrid solver and a U-net.

Organisation of the Paper. In Section 2, we translate different numerical
approximations for higher order diffusion into CNNs and analyse the resulting
architectures. Covering multi-resolution approaches, we show that a multigrid
solver can be cast into a U-net form in Section 3. Finally, we present our con-
clusions and an outlook on future work in Section 4.

2 Networks from Algorithms for Evolution Equations

In this section, we start with generalised diffusion filters in 1D, and we translate
three numerical algorithms for them into neural network architectures. This gives
novel insights into the value of skip connections, stable network design, and the
potential of nonmonotone activation functions.

2.1 Generalised Nonlinear Diffusion

We consider a generalised higher order nonlinear diffusion model in 1D. It creates
filtered signals u(x, t) : (a, b)×[0,∞) → R from an initial signal f(x) on a domain
(a, b) ⊂ R according to the PDE

∂tu = −D∗
(

g
(

|Du|2
)

Du
)

(1)

which is the gradient flow that minimises the energy E(u) =
∫

b

a
Ψ(|Du|2) dx with

g = Ψ ′. We use a general differential operator D =
∑

M

m=0 αm∂m
x and its adjoint

version D∗ =
∑M

m=0(−1)mαm∂m
x
, both consisting of weighted derivatives of up

to order M . Thus, the corresponding PDE is of order 2M . The evolution is
initialised at time t = 0 by u(x, 0) = f(x), and we impose reflecting boundary
conditions at x = a and x = b. Equation (1) creates gradually simplified versions
of f . The scalar diffusivity function g(s2) controls the amount of smoothing
depending on the local structure of the evolving signal. We consider diffusivities
that are smooth, nonnegative, nonincreasing, and bounded from above.

Depending on the operator D and the choice of the diffusivity, the evolution
describes different models. For D = ∂x, one obtains a 1D version of the nonlinear
diffusion filter of Perona and Malik [19]. For this model the exponential diffusiv-
ity g(s2) = exp(−s2/(2λ2)) inhibits smoothing near discontinuities where |∂xu|
exceeds a contrast parameter λ. This allows discontinuity-preserving smoothing.
A higher order choice of D = ∂2

x yields a 1D version of the fourth order PDE of
You and Kaveh [26].
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2.2 Residual Networks

Residual networks [11] are a popular CNN architecture as they are easy to train,
even for a high number of network layers. They consist of chained residual blocks.
A residual block is made up of two convolutional layers with biases and nonlinear
activation functions after each layer. Each block computes a discrete output u

from an input f by

u = σ2(f +W2 σ1(W1f + b1) + b2) , (2)

with discrete convolution matrices W1,W2, activation functions σ1, σ2 and bias
vectors b1, b2. The main difference to feed-forward CNNs lies in the skip connec-
tion which adds the original input signal f to the result of the inner activation
function σ1. This facilitates training of very deep networks.

2.3 Expressing Explicit Schemes as Residual Networks

In the following, we derive a direct correspondence between an explicit scheme
for the generalised diffusion equation (1) and a ResNet. With the help of the
flux function Φ(s) = g(s2) s, we rewrite (1) as

∂tu = −D∗(Φ(Du)) . (3)

We now discretise this equation with an explicit finite difference scheme. To
obtain discrete vectors u,f ∈ R

N , we sample the continuous functions u, f
with distance h. We employ a forward difference with time step size τ for the
time derivative. Moreover, we represent a discretisation of the operator D by a
convolution matrix K. Thus, the adjoint operator D∗ is represented by K⊤.

Starting with an initial signal u0 = f , the evolving signal uk+1 at time step
k + 1 arises from the previous one by

uk+1 = uk − τK⊤Φ
(

Kuk
)

. (4)

In this notation, the connection between an explicit diffusion step and a ResNet
block becomes apparent:

Theorem 1 (Diffusion-inspired ResNets). A higher order diffusion step (4)
is equivalent to a residual block (2) if

σ1 = τ Φ, σ2 = Id, W1 = K, W2 = −K⊤, (5)

and the bias vectors b1, b2 are set to 0.

Interestingly, the inner activation function σ1 corresponds to a scaled version
of the flux function Φ. The effect of the skip connection in the residual block
also becomes clear now: It is the central component to realise a time discreti-
sation. We call a ResNet block of this form a diffusion block. It is visualised in
Figure 1(a). Graph nodes contain the current state of the signal, while edges
describe operations which are applied to proceed from one node to the next.

We observe that the convolution matrices satisfy W2 = −W⊤
1 . This is a

direct consequence of the gradient flow structure of the diffusion process. In the
following, we prove stability and well-posedness for this specific form of ResNets.
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Fig. 1: (a) Left: Diffusion block for an explicit diffusion step (4) with flux function
Φ, time step size τ , and a discrete derivative operator K. (b) Right: FSI block.

2.4 Criteria for Well-posed and Stable Residual Networks

Now we are able to transfer stability [5] and well-posedness [24] results for dif-
fusion to a residual network consisting of diffusion blocks. We show Euclidean
stability, which states that the Euclidean norm of the signal is nonincreasing
in each iteration, i.e. ||uk+1||2 ≤ ||uk||2. Well-posedness guarantees that the
network output is a continuous function of the input data.

Theorem 2 (Euclidean Stability of ResNets with Diffusion Blocks).
Consider a residual network chaining any number of diffusion blocks (4) with

convolutions represented by a convolution matrix K and activation function τΦ.

Moreover, assume that the activation function arises from a diffusion flux func-

tion Φ(s) = g(s2) s with finite Lipschitz constant L. Then the residual network

is well-posed and stable in the Euclidean norm if τ ≤ 2
(

L||K||22
)−1

. Here, || · ||2
denotes the spectral norm which is induced by the Euclidean norm.

Proof. We first notice that since Φ(s) = g(s2) s, applying the flux function leads
to a rescaling with a diagonal matrix G(uk) with g((Kuk)2

i
) as i-th diagonal

element. Therefore, we can write (4) as

uk+1 =
(

I − τK⊤G(uk)K
)

uk. (6)

At this point, well-posedness follows directly from the continuity of the operator
I − τK⊤G(uk)K, as the diffusivity g is assumed to be smooth [24].

We now show that the time step size restriction guarantees that the eigen-
values of the operator always lie in the interval [−1, 1]. As the spectral norm
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is sub-multiplicative, we can estimate the eigenvalues of K⊤G(uk)K for each
matrix separately. Since g is nonnegative, the diagonal matrix G is positive semi-
definite. The maximal eigenvalue of G is the given by the supremum of g. As g is
non-increasing and bounded, this value is bounded by the Lipschitz constant L
of Φ. Thus, the eigenvalues of K⊤G(uk)K lie in the interval [0, τL||K||22]. Con-
sequently, the operator I − τK⊤G(uk)K has eigenvalues in [1 − τL||K||22, 1],

and the condition 1− τL||K||22 ≥ −1 leads to the bound τ ≤ 2
(

L||K||22
)−1

. ⊓⊔

How General is this Result? Theorem 2 is of fairly general nature and applies
to a broad class of ResNets. The fact that K represents a discrete differential
operator is no restriction on the convolution, since any convolution kernel can
be seen as a discretisation of a suitable differential operator D =

∑M

m=0 αm∂m
x .

Interestingly, our proof does not require the matrix K to have a convolution
structure: It can be any arbitrary matrix. This even includes neural networks
beyond CNNs, since the weights within a layer may differ from node to node.

The key requirement for network stability is the
transposed convolution structure W2 = −W T

1 .

While this requirement is not fulfilled by the original ResNet [11], several works
employ the transposed structure [3,22,27] as it is justified from a PDE perspec-
tive, requires less parameters, and provides stability guarantees.

In contrast to Ruthotto and Haber [22], our stability result does not require
activation functions to be monotone. Let us now see that widely used diffusivities
naturally lead to nonmonotone activation functions.

2.5 Nonmonotone Activation Functions

The connection between diffusivity g(s2) and activation function σ(s) = τΦ(s)
with the diffusion flux Φ(s) = g(s2) s revitalises an old idea of neural network
design [4,15]. As an example, we translate the exponential Perona–Malik diffu-

sivity g(s2) = exp
(

− s
2

2λ2

)

into its corresponding activation σ(s) = τs exp
(

− s
2

2λ2

)

.
Interestingly, this activation function is antisymmetric and nonmonotone.

Antisymmetry is very natural in the diffusion case with D =
∑

M

m=1 αm∂m
x
,

where the argument of the flux function consists of signal derivatives. It re-
flects the invariance axiom that signal negation and filtering are commutative.
Nonmonotone flux functions were considered somewhat problematic for contin-
uous diffusion PDEs. However, it has been shown that their discretisations are
well-posed [25], in spite of the fact that they may act contrast enhancing.

The concept of a nonmonotone activation function is unusual in the CNN
world. Although there have been a few early proposals in the neural network
literature arguing in favour of nonmonotone activations [4,15], they are rarely
used in modern CNNs. In practice, CNNs often fix the activation to simple
functions such as the rectified linear unit (ReLU). From a PDE perspective,
this appears restrictive. The diffusion interpretation suggests that activation
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functions should be learned in the same manner as convolution weights and
biases. In practice, this hardly happens apart from a few notable exceptions
such as [3,7,17]. As nonmonotone flux functions outperform monotone ones in
the diffusion setting, it appears promising to incorporate them into CNNs. For
more examples of diffusion-inspired activation functions, we refer to [1].

2.6 FSI Schemes and Additional Skip Connections

In the following, we show that an acceleration strategy of the explicit scheme
induces a natural modification for the skip connections of the corresponding
ResNet architecture. To speed up explicit schemes, Hafner et al. [9] proposed
fast semi-iterative (FSI) schemes. They perform a cycle of extrapolated explicit
steps. For our diffusion scheme (4), an FSI acceleration with cycle length L reads

uk+ ℓ+1

L = αℓ

(

I − τK⊤Φ
(

Kuk+ ℓ

L

))

+ (1− αℓ)u
k+ ℓ−1

L (7)

with ℓ = 0, . . . , L−1 and extrapolation weights αℓ := (4ℓ + 2)/(2ℓ + 3). One

formally initialises with uk−
1
L := uk. This cycle realises a super time step of size

L(L+1)
3 τ . Thus, with one cycle involving L explicit steps, one reaches a super

step size of O(L2) rather than O(L). This explains its remarkable efficiency [9].
We see that FSI extrapolates the diffusion result at time step k+ ℓ

L
with the

previous time step k+ ℓ−1
L

and the weight αℓ. This can be realised with a small
change in the original diffusion block from Figure 1(a) by adding an additional
skip connection. The two skip connections are weighted by αℓ and (1 − αℓ),
respectively. This gives the architecture in Figure 1(b).

We observe a different benefit of skip connections: Additional and more gen-
eral skip connections constitute a whole class of acceleration strategies, which is
in line with observations in the CNN literature; see e.g. [13,14].

2.7 Implicit Schemes and Recurrent Neural Networks

So far, we have connected variants of explicit schemes to ResNets. However,
implicit discretisations are another important class of solvers. We now show
that such a discretisation of our diffusion equation leads to a recurrent neural
network (RNN). RNNs are classical neural network architectures; see e.g. [12].
The fully implicit discretisation of (1) is given by

uk+1 = uk − τK⊤Φ
(

Kuk+1
)

. (8)

We solve the resulting nonlinear system of equations by L fixed point iterations:

uk+ ℓ+1

L = uk − τK⊤Φ
(

Kuk+ ℓ

L

)

, (9)

where ℓ = 0, . . . , L−1, and where we assume that τ is sufficiently small to yield
a contraction mapping. For L = 1, we obtain the explicit scheme (4) with its
ResNet interpretation. For larger L, however, different skip connections arise.
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They connect the layer at time step k with all subsequent layers at steps k + ℓ

L

with ℓ = 0, . . . , L−1. This feedback can be seen as an RNN architecture.
In the context of variational models, Chen and Pock [3] have obtained a

similar architecture. However, they explicitly supplement the diffusion process
with an additional reaction term which results from the data term of the energy.
Our feedback term is a pure numerical phenomenon of the fixed point solver.

We see that skip connections can implement a number of successful numeri-
cal concepts: forward difference approximations of the time derivative in explicit
schemes, extrapolation steps to accelerate them e.g. via FSI, and recurrent con-
nections within fixed point solvers for implicit schemes.

3 Multigrid Solvers and U-nets

Multigrid methods [2] are very efficient numerical strategies for solving PDE-
based problems. Neural networks, on the other hand, have benefitted from mul-
tiscale ideas as well, as can be seen e.g. from the high popularity of U-nets [20].
In this section we shed some light on their structural connections. For simplicity
we restrict ourselves to a linear multigrid setting with two levels.

3.1 U-net Architectures

The U-net [20] has proven useful in applications such as segmentation [20] or
pose estimation [16], where features on multiple scales need to be extracted

As its name suggests, the U-net has a symmetric shape: On the left half
of the architecture, convolutions extract features while repeated downsampling
operators reduce the resolution. On the right half, features are successively up-
sampled, combined and convolved, starting with the coarsest resolution. The
original U-net [20] combines features by concatenation, while other works such
as [16] use addition. In the following, we focus on the latter design choice.

For our purposes, it is sufficient to consider a U-net with only two resolutions
and a constant number of channels. We use superscripts h and H to denote
computations on the fine and coarse grid, respectively. The following six steps
capture the essential structure of such a U-net:

1. One applies a number of CNN layers to the input fh, yielding a modified
signal f̃h. We denote this general operation by a function Ch

1 (·).
2. To provide a coarse input fH = Rh→H f̃h to the next level, a restriction

operator Rh→H brings the modified signal f̃h to a coarse resolution H . For
example, the restriction can consist of an averaging or max-pooling.

3. On the coarse grid, the downsampled signal fH is again modified by a series
of layers to obtain f̃H = CH(fH).

4. One upsamples the coarse result f̃H with a prolongation operator PH→h.
5. On the fine grid, one adds the modified fine grid signal f̃h and the upsampled

one PH→hfH and obtains f̃h
new.

6. Lastly, applying more layers Ch
2 (·) yields the final solution f̂ = Ch

2 (f̃
h
new).

Figure 2(a) visualises this architecture. In the following, we express a multigrid
V-cycle in this form by utilising multiple network channels.
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fh Ch

1 (·) f̃h + f̃h

new Ch

2 (·) f̂h

fH CH(·) f̃H

Rh→H PH→h

(a) U-net architecture for an input fh.

xh

0 , b
h
, · Sh

A(·) x̃h
, bh, rh + x̃h

new, b
h
, · Sh

A(·) x̂h
, bh, r̂h

xH

0 , bH , · SH

A (·) x̃H
, bH , rH







0 0 0

0 0 Rh→H

· · ·













PH→h 0 0

0 0 0

· · ·







(b) Two-level V-Cycle in the form of a U-net utilising three-channel signals containing
the iteration variable x, a right hand side b, and the residual r.

Fig. 2: Architectures for a general U-net and a multigrid V-cycle.

3.2 Expressing a Multigrid V-cycle within a U-net

Multigrid methods [2] allow for the efficient solution of equation systems that
result from the numerical approximation of PDEs. For simplicity we consider
a linear system of equations given by Ax = b. For classical iterative solvers
such as the Jacobi or the Gauss–Seidel method, one observes that low-frequent
error components are attenuated only very slowly. Hence, their convergence is
slow. Multigrid methods transfer the low-frequent error components to a coarser
scale, where the iterative solvers work more efficiently. The coarse scale solution
is then used to correct the fine scale approximation.

To connect multigrid ideas to U-nets, we consider a V-cycle on two levels
with grid sizes h and H for the fine and coarse grid. For our U-net, we use three
channels. They contain the iteration variable x of the solver, the right hand side
b of the equation system, and the current residual r. Even though we do not
always need all channels, we keep the channel number constant for simplicity. A
two-level V-cycle solves the linear system by repeating the following steps:

1. The inputs are a fine grid initialisation xh
0 = 0 and the given right hand side

bh. The residual at this point is ignored, as it is not relevant to the solver
input. We assume that we are given a solver Sh

A
(·) for the operator Ah. It

produces a three-channel signal containing an approximate solution x̃h, the
right hand side bh, and a residual rh = bh −Ahx̃h.

2. While the true error eh of the approximation is unknown, the residual rh

can be computed. This leads to the residual equation Aheh = rh which
can be solved efficiently on a coarser grid. To this end, one uses a restriction
operatorRh→H . As the downsampling is now explicitly concerned with three
channels, the corresponding operator in the CNN is a 3×3 block matrix. The
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coarse initialisation xH
0 = 0 does not require any information from the fine

scale. Crucially, the new right hand side bH is the downsampled fine residual,
i.e. bH = Rh→Hrh. Lastly, an input residual is not required for the coarse
solver. Thus, one obtains the coarse grid residual equation AHxH = bH .

3. The coarse grid solver SH

A
(·) now solves the residual equation. It outputs a

coarse approximation x̃H to the residual error, the right hand side bH , and
a new coarse residual rH . The latter two would be required if one wants to
add another level to the cycle.

4. In the upsampling step, we prepare the coarse scale outputs for the following
addition. Similar to the downsampling, we upsample only the coarse error
approximation x̃H by a prolongation operator PH→h. The coarse right hand
side bH is set to 0 as to not interfere with the fine right hand side.

5. On the fine grid, one adds the three signal channels. The initial fine grid
approximation is updated with the upsampled error on the coarse grid by
x̃h
new := x̃h + PH→hx̃H . As we have applied the prolongation only to the

coarse solution, the fine grid right hand side bh is propagated.
6. Another instance of the fine grid solver Sh

A
(·) takes the corrected solution

xh
new and the original right hand side bh, yielding a new approximation x̂h.

We visualise this architecture in Figure 2(b). Restriction and prolongation op-
erators are applied only to certain channels of the solver output instead of all
channels. In the downsampling phase, the restriction is applied to the residual,
while in the upsampling phase, it is applied to the approximated error. This
enables the coarse solver to work on the residual equation instead of only a
coarse version of the original equation, which is the crucial idea of multigrid
methods. The architecture utilises yet another form of skip connection: The fine
scale approximation is corrected by adding an upsampled error approximation.

Our two-level setting can be generalised to more levels. Deeper V-cycles are
constructed by stacking the two-level V-cycle recursively, and so-called W-cycles
are built by concatenating two V-cycles. On the CNN side, this leads to U-
nets with more levels, as well as concatenations thereof. This idea is also used
in practice: Successful U-nets work on multiple resolutions [20], and so-called
stacked hourglass models [16] arise by concatenating multiple V-cycle architec-
tures. It shows that multigrid architectures share essential structural properties
with U-nets.

4 Conclusions

Our paper is based on the philosophy of regarding a trained neural network as a
numerical algorithm. To substantiate this claim, we have translated a number of
efficient numerical algorithms for PDEs into popular building blocks for network
architectures. Apart from a few notable exceptions such as [14], this strategy
has rarely been pursued in its full consequence. We have shown that valuable
structural insights can be gained from such a direct translation, and we have
derived systematic design principles for well-founded network components.
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More specifically, we have shown the value of skip connections from three
different numerical perspectives: as time discretisations in explicit schemes, as
extrapolation terms to increase their efficiency, and as recurrent connections in
implicit schemes with fixed point structure. By connecting multigrid methods to
U-nets, we provide a basis for explaining for their remarkable efficiency. Numer-
ical schemes for generalised diffusion processes suggest that nonmonotone acti-
vation functions are permissible and can be advantageous. Last but not least, we
have seen that a ResNet block with a transposed structure of both convolution
layers can guarantee Euclidean stability in a simple and elegant way.

Our contributions can serve as a blueprint for translating a larger class of
successful numerical concepts for PDEs to CNNs. This is part of our ongoing
work. It is our hope that this will lead to a closer connection of both worlds and
to hybrid methods that unite the stability and efficiency of modern numerical
algorithms with the performance of neural networks.

Acknowlegdements. We thank Matthias Augustin and Michael Ertel for fruit-
ful discussions and feedback on our manuscript.
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