Abstract
Compression methods based on inpainting are an evolving alternative to classical transform-based codecs for still images. Attempts to apply these ideas to video compression are rare, since reaching real-time performance is very challenging. Therefore, current approaches focus on simplified frame-by-frame reconstructions that ignore temporal redundancies. As a remedy, we propose a highly efficient, real-time capable prediction and correction approach that fully relies on partial differential equations (PDEs) in all steps of the codec: Dense variational optic flow fields yield accurate motion-compensated predictions, while homogeneous diffusion inpainting is applied for intra prediction. To compress residuals, we introduce a new highly efficient block-based variant of pseudodifferential inpainting. Our novel architecture outperforms other inpainting-based video codecs in terms of both quality and speed. For the first time in inpainting-based video compression, we can decompress FullHD (1080p) videos in real-time with a fully CPU-based implementation, outperforming previous approaches by roughly one order of magnitude.
This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 741215, ERC Advanced Grant INCOVID). We thank Matthias Augustin for sharing his in-depth knowledge in pseudodifferential inpainting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andris, S., Peter, P., Weickert, W.: A proof-of-concept framework for PDE-based video compression. In: Proceedings of the 2016 Picture Coding Symposium. IEEE Computer Society Press, Nürnberg, Germany (2016)
Arai, Y., Agui, T., Nakajima, M.: A fast DCT-SQ scheme for images. IEICE Trans. 71(11), 1095–1097 (1988)
Augustin, M., Weickert, J., Andris, S.: Pseudodifferential inpainting: the missing link between PDE- and RBF-based interpolation. In: Lellmann, J., Burger, M., Modersitzki, J. (eds.) SSVM 2019. LNCS, vol. 11603, pp. 67–78. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22368-7_6
Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vision 92(1), 1–31 (2011)
Breuß, M., Hoeltgen, L., Radow, G.: Towards PDE-based video compression with optimal masks prolongated by optic flow. J. Math. Imag. Vision 62, 1–13 (2020)
Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_3
Bull, D.: Communicating Pictures: A Course in Image and Video Coding. Academic Press, Cambridge, MA (2014)
Carlsson, S.: Sketch based coding of grey level images. Signal Process. 15(1), 57–83 (1988)
Chen, W., Mied, R.: Optical flow estimation for motion-compensated compression. Image Vision Comput. 31(3), 275–289 (2013)
Collet, Y.: Finite state entropy (2013). https://github.com/Cyan4973/FiniteStateEntropy
Deuflhard, P.: Cascadic conjugate gradient methods for elliptic partial differential equations: algorithm and numerical results. In: Keyes, D.E., Xu, J. (eds.) Contemporary Mathematics, vol. 180, pp. 29–29. American Mathematical Society, Procidence, RI (1994)
Doshkov, D., Ndjiki-Nya, P., Lakshman, H., Koppel, M., Wiegand, T.: Towards efficient intra prediction based on image inpainting methods. In: Proceedings of the 27th Picture Coding Symposium, pp. 470–473. IEEE Computer Society Press, Nagoya, Japan (2010)
Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.P.: Image compression with anisotropic diffusion. J. Math. Imag. Vision 31(2–3), 255–269 (2008)
Han, S.C., Podilchuk, C.: Video compression with dense motion fields. IEEE Trans. Image Process. 10(11), 1605–1612 (2001)
Haskell, B.G., Puri, A., Netravali, A.N.: Digital Video: An Introduction to MPEG-2. Springer, Berlin (1996)
Hoffmann, S., Plonka, G., Weickert, J.: Discrete Green’s functions for harmonic and biharmonic inpainting with sparse atoms. In: Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M. (eds.) EMMCVPR 2015. LNCS, vol. 8932, pp. 169–182. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14612-6_13
Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)
Jost, F., Peter, P., Weickert, J.: Compressing flow fields with edge-aware homogeneous diffusion inpainting. In: Proceedings of the 45th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 2198–2202. IEEE Computer Society Press, Barcelona, Spain (2020)
Köstler, H., Stürmer, M., Freundl, C., Rüde, U.: PDE based video compression in real time. Tech. Rep. 07–11, Lehrstuhl für Informatik 10, University Erlangen-Nürnberg, Germany (2007)
Li, B., Han, J., Xu, Y.: Co-located reference frame interpolation using optical flow estimation for video compression. In: Proceedings of the 2018 Data Compression Conference, pp. 13–22. IEEE Computer Society Press, Snowbird, UT (2018)
Liu, D., Sun, X., Wu, F., Zhang, Y.Q.: Edge-oriented uniform intra prediction. IEEE Trans. Image Process. 17(10), 1827–1836 (2008)
Ottaviano, G., Kohli, P.: Compressible motion fields. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2251–2258. IEEE Computer Society Press, Oregon, OH (2013)
Peter, P., Kaufhold, L., Weickert, J.: Turning diffusion-based image colorization into efficient color compression. IEEE Trans. Image Process. 26(2), 860–869 (2016)
Peter, P., Schmaltz, C., Mach, N., Mainberger, M., Weickert, J.: Beyond pure quality: progressive modes, region of interest coding, and real time video decoding for PDE-based image compression. J. Vis. Commun. Image Represent. 31(4), 253–265 (2015)
Rissanen, J.J.: Generalized Kraft inequality and arithmetic coding. IBM J. Res. Dev. 20(3), 198–203 (1976)
Roosendaal, T.: Sintel. In: ACM SIGGRAPH 2011 Computer Animation Festival, p. 71. New York, NY, USA (2011)
Sanchez, V., Garcia, P., Peinado, A.M., Segura, J.C., Rubio, A.J.: Diagonalizing properties of the discrete cosine transforms. IEEE Trans. Signal Process. 43(11), 2631–2641 (1995)
Schmaltz, C., Peter, P., Mainberger, M., Ebel, F., Weickert, J., Bruhn, A.: Understanding, optimising, and extending data compression with anisotropic diffusion. Int. J. Comput. Vision 108(3), 222–240 (2014)
Schmaltz, C., Weickert, J.: Video compression with 3-D pose tracking, PDE-based image coding, and electrostatic halftoning. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds.) DAGM/OAGM 2012. LNCS, vol. 7476, pp. 438–447. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32717-9_44
Strang, G., MacNamara, S.: Functions of difference matrices are Toeplitz plus Hankel. SIAM Rev. 56(3), 525–546 (2014)
Tan, T.K., Boon, C.S., Suzuki, Y.: Intra prediction by template matching. In: Proceedings of the 2006 IEEE International Conference on Image Processing, pp. 1693–1696. IEEE Computer Society Press, Atlanta, GA, USA (2006)
Taubman, D.S., Marcellin, M.W. (eds.): JPEG 2000: Image Compression Fundamentals. Standards and Practice. Kluwer, Boston (2002)
Wu, C.-Y., Singhal, N., Krähenbühl, P.: Video compression through image interpolation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 425–440. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_26
Zhang, Y., Lin, Y.: Improving HEVC intra prediction with PDE-based inpainting. In: Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), IEEE Computer Society Press, Chiang Mai, Thailand (2014)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Andris, S., Peter, P., Mohideen Kaja Mohideen, R., Weickert, J., Hoffmann, S. (2021). Inpainting-Based Video Compression in FullHD. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2021. Lecture Notes in Computer Science(), vol 12679. Springer, Cham. https://doi.org/10.1007/978-3-030-75549-2_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-75549-2_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-75548-5
Online ISBN: 978-3-030-75549-2
eBook Packages: Computer ScienceComputer Science (R0)