Skip to main content

Total Deep Variation for Noisy Exit Wave Reconstruction in Transmission Electron Microscopy

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2021)

Abstract

Transmission electron microscopes (TEMs) are ubiquitous devices for high-resolution imaging on an atomic level. A key problem related to TEMs is the reconstruction of the exit wave, which is the electron signal at the exit plane of the examined specimen. Frequently, this reconstruction is cast as an ill-posed nonlinear inverse problem. In this work, we integrate the data-driven total deep variation regularizer to reconstruct the exit wave in this inverse problem. In several numerical experiments, the applicability of the proposed method is demonstrated for different materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010). https://doi.org/10.1137/090769521

    Article  MathSciNet  MATH  Google Scholar 

  2. Buseck, P., Cowley, J., Eyring, L.: High-Resolution Transmission Electron Microscopy And Associated Techniques. Oxford University Press, Oxford (1989)

    Google Scholar 

  3. Carter, C.B., Williams, D.B. (eds.): Transmission Electron Microscopy. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26651-0

    Book  Google Scholar 

  4. Coene, W., Thust, A., Op de Beeck, M., Van Dyck, D.: Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy 64(14), 109–135 (1996)

    Article  Google Scholar 

  5. Doberstein, C., Berkels, B.: A least-squares functional for joint exit wave reconstruction and image registration. Inverse Problems 35(5), 054004, 31 (2019). https://doi.org/10.1088/1361-6420/ab0b04

  6. E, W., Han, J., Li, Q.: A mean-field optimal control formulation of deep learning. Res. Math. Sci. 6(1), 1–41 (2018). https://doi.org/10.1007/s40687-018-0172-y

    Article  MathSciNet  Google Scholar 

  7. Ede, J.M., Peters, J.J., Sloan, J., Beanland, R.: Exit wavefunction reconstruction from single transmission electron micrographs with deep learning. arXiv (2020)

    Google Scholar 

  8. Effland, A., Kobler, E., Kunisch, K., Pock, T.: Variational networks: an optimal control approach to early stopping variational methods for image restoration. J. Math. Imaging Vis. 62(3), 396–416 (2020). https://doi.org/10.1007/s10851-019-00926-8

    Article  MathSciNet  MATH  Google Scholar 

  9. Egerton, R.F.: Physical Principles of Electron Microscopy. Springer, Boston (2005). https://doi.org/10.1007/b136495

  10. Haider, S.A., Cameron, A., Siva, P., Lui, D., Shafiee, M.J., Boroomand, A., Haider, N., Wong, A.: Fluorescence microscopy image noise reduction using a stochastically-connected random field model. Sci. Rep. (2016). https://doi.org/10.1038/srep20640

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Su, J.: Delving deep into rectifiers:surpassing human-level performance on ImageNet classification. In: ICCV (2015)

    Google Scholar 

  12. Huang, J., Mumford, D.: Statistics of natural images and models. In: CVPR, vol. 1, pp. 541–547 (1999). https://doi.org/10.1109/CVPR.1999.786990

  13. Ishizuka, K.: Contrast transfer of crystal images in tem. Ultramicroscopy 5(1), 55–65 (1980). https://doi.org/10.1016/0304-3991(80)90011-X

    Article  Google Scholar 

  14. Kingma, D.P., Ba, J.L.: ADAM: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  15. Kirkland, E.J.: Improved high resolution image processing of bright field electron micrographs: I. theory. Ultramicroscopy 15(3), 151–172 (1984). https://doi.org/10.1016/0304-3991(84)90037-8, http://www.sciencedirect.com/science/article/pii/0304399184900378

  16. Kirkland, E.J.: Advanced Computing in Electron Microscopy (2010). https://doi.org/10.1007/978-1-4419-6533-2

    Article  Google Scholar 

  17. Kobler, E., Effland, A., Kunisch, K., Pock, T.: Total deep variation: a stable regularizer for inverse problems. arXiv (2020)

    Google Scholar 

  18. Kobler, E., Effland, A., Kunisch, K., Pock, T.: Total deep variation for linear inverse problems. In: CVPR (2020)

    Google Scholar 

  19. Landweber, L.: An iteration formula for fredholm integral equations of the first kind. Am. J. Math. 73(3), 615–624 (1951). https://doi.org/10.2307/2372313

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, H., Schwab, J., Antholzer, S., Haltmeier, M.: NETT: solving inverse problems with deep neural networks. Inverse Problems 36(6), 065005, 23 (2020). https://doi.org/10.1088/1361-6420/ab6d57

  21. Pinetz, T., Kobler, E., Pock, T., Effland, A.: Shared prior learning of energy-based models for image reconstruction. arXiv preprint arXiv:2011.06539 (2020)

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Roth, S., Black, M.J.: Fields of experts. Int. J. Comput. Vis. 82(2), 205–229 (2009). https://doi.org/10.1007/s11263-008-0197-6

    Article  Google Scholar 

  24. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992). https://doi.org/10.1016/0167-2789(92)90242-F

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, R.: Making convolutional networks shift-invariant again. ICML. 97, 7324–7334 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Pinetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pinetz, T., Kobler, E., Doberstein, C., Berkels, B., Effland, A. (2021). Total Deep Variation for Noisy Exit Wave Reconstruction in Transmission Electron Microscopy. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2021. Lecture Notes in Computer Science(), vol 12679. Springer, Cham. https://doi.org/10.1007/978-3-030-75549-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75549-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75548-5

  • Online ISBN: 978-3-030-75549-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics