Skip to main content

SCARLET: Explainable Attention Based Graph Neural Network for Fake News Spreader Prediction

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12712))

Included in the following conference series:

  • 4171 Accesses

Abstract

False information and true information fact checking it, often co-exist in social networks, each competing to influence people in their spread paths. An efficient strategy here to contain false information is to proactively identify if nodes in the spread path are likely to endorse false information (i.e. further spread it) or refutation information (thereby help contain false information spreading). In this paper, we propose SCARLET (truSt andCredibility bAsed gRaph neuraLnEtwork model using aTtention) to predict likely action of nodes in the spread path. We aggregate trust and credibility features from a node’s neighborhood using historical behavioral data and network structure and explain how features of a spreader’s neighborhood vary. Using real world Twitter datasets, we show that the model is able to predict false information spreaders with an accuracy of over 87%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/BhavtoshRath/GAT-GCN-SpreaderPrediction.

References

  1. Budak, C., Agrawal, D., Abbadi, A.: Limiting the spread of misinformation in social networks. In: WWW (2011)

    Google Scholar 

  2. Castillo, C., Mendoza, M., Poblete, B.: Information credibility on Twitter. In: WWW (2011)

    Google Scholar 

  3. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Article  MATH  Google Scholar 

  4. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NeurIPS (2017)

    Google Scholar 

  5. Jaeger, M., Anthony, S., Rosnow, R.: Who hears what from whom and with what effect: a study of rumor. Pers. Soc. Psychol. Bull. 6, 473–478 (1980)

    Article  Google Scholar 

  6. Kipf, T., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  7. Metzger, M., Flanagin, A.: Credibility and trust of information in online environments: the use of cognitive heuristics. J. Pragmatics 59, 210–220 (2013)

    Article  Google Scholar 

  8. Morris, M., Counts, S., Roseway, A., Hoff, A., Schwarz, J.: Tweeting is believing? Understanding microblog credibility perceptions. In: CSCW (2012)

    Google Scholar 

  9. Nguyen, N., Yan, G., Thai, M., Eidenbenz, S.: Containment of misinformation spread in online social networks. In: WebSci (2012)

    Google Scholar 

  10. Petty, R., Cacioppo, J.: Communication and Persuasion: Central and Peripheral Routes to Attitude Change. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4612-4964-1

    Book  Google Scholar 

  11. Qiu, J., Tang, J., Ma, H., Dong, Y., Wang, K., Tang, J.: Deepinf: social influence prediction with deep learning. In: KDD (2018)

    Google Scholar 

  12. Rath, B., Gao, W., Ma, J., Srivastava, J.: Utilizing computational trust to identify rumor spreaders on Twitter. Soc. Netw. Anal. Min. 8(1), 1–16 (2018). https://doi.org/10.1007/s13278-018-0540-z

    Article  Google Scholar 

  13. Rath, B., Gao, W., Srivastava, J.: Evaluating vulnerability to fake news in social networks: a community health assessment model. In: ASONAM (2019)

    Google Scholar 

  14. Renn, O., Levine, D.: Credibility and trust in risk communication. In: Kasperson, R.E., Stallen, P.J.M. (eds.) Communicating Risks to the Public. Technology, Risk, and Society (An International Series in Risk Analysis), vol. 4, pp. 175–217. Springer, Dordrecht (1991). https://doi.org/10.1007/978-94-009-1952-5_10

    Chapter  Google Scholar 

  15. Rosnow, R.: Inside rumor: a personal journey. Am. Psychol. 46, 484 (1991)

    Article  Google Scholar 

  16. Roy, A., Sarkar, C., Srivastava, J., Huh, J.: Trustingness & trustworthiness: a pair of complementary trust measures in a social network. In: ASONAM (2016)

    Google Scholar 

  17. Sharma, K., Qian, F., Jiang, H., Ruchansky, N., Zhang, M., Liu, Y.: Combating fake news: a survey on identification and mitigation techniques. In: TIST (2019)

    Google Scholar 

  18. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: WWW (2015)

    Google Scholar 

  19. Tong, A., Du, D., Wu, W.: On misinformation containment in online social networks. In: NeurIPS (2018)

    Google Scholar 

  20. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  21. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  22. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.: A comprehensive survey on graph neural networks. Trans. Neural Netw. Learn. Syst. (2020)

    Google Scholar 

  23. Lu, Y., Li, C.: GCAN: graph-aware co-attention networks for explainable fake news detection on social media. In: ACL (2020)

    Google Scholar 

  24. Shu, K., Cui, L., Wang, S., Lee, D., Liu, H.: defend: explainable fake news detection. In: KDD (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bhavtosh Rath , Xavier Morales or Jaideep Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rath, B., Morales, X., Srivastava, J. (2021). SCARLET: Explainable Attention Based Graph Neural Network for Fake News Spreader Prediction. In: Karlapalem, K., et al. Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12712. Springer, Cham. https://doi.org/10.1007/978-3-030-75762-5_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75762-5_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75761-8

  • Online ISBN: 978-3-030-75762-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics