Skip to main content

C\(^2\)-Guard: A Cross-Correlation Gaining Framework for Urban Air Quality Prediction

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12712))

Included in the following conference series:

  • 3652 Accesses

Abstract

Predicting air quality is increasingly important for protecting people’s daily health and helping government decision-making. The multistep air quality prediction largely depends on the correlations of air quality-related factors. How to model the correlations among factors is a big challenge. In this paper, we propose a cross-correlation gaining framework (C\(^2\)-Guard) consisting of a temporal correlation module, factor correlation module, and cross gaining module for air quality (mainly PM2.5) prediction. Specifically, the temporal correlation module is used to extract the temporal dependence of air pollutant time series to gain their distributed representation. In the factor correlation module, a novel convolution and recalibration block is designed for air quality factor correlations extraction to gain their distributed representation in the factor dimension. In the cross gaining module, a joint-representation block is proposed to learn the cross-correlations between time and factor dimensions. Finally, extensive experiments are conducted on two real-world air quality datasets. The results demonstrate that our C\(^2\)-Guard outperforms the state-of-the-art methods of air pollutants prediction in terms of RMSE and MAE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.healtheffects.org/announcements/state-global-air-2019-air-pollution-significant-risk-factor-worldwide.

  2. 2.

    https://archive.ics.uci.edu/ml/index.php.

  3. 3.

    https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data.

  4. 4.

    https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data.

  5. 5.

    https://github.com/philipperemy/keras-tcn.

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: USENIX Symposium on Operating Systems Design and Implementation, pp. 265–283 (2016)

    Google Scholar 

  2. Abhilash, M.S.K., Thakur, A., Gupta, D., Sreevidya, B.: Time series analysis of air pollution in Bengaluru using ARIMA model. In: Perez, G.M., Tiwari, S., Trivedi, M.C., Mishra, K.K. (eds.) Ambient Communications and Computer Systems. AISC, vol. 696, pp. 413–426. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7386-1_36

    Chapter  Google Scholar 

  3. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. CoRR abs/1803.01271 (2018)

    Google Scholar 

  4. Díaz-Robles, L.A., Ortega, J.C.: A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile. Atmos. Environ. 42(35), 8331–8340 (2008)

    Article  Google Scholar 

  5. Du, S., Li, T., Yang, Y., Horng, S.J.: Deep air quality forecasting using hybrid deep learning framework. IEEE Trans. Knowl. Data Eng. 1 (2019)

    Google Scholar 

  6. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)

    Google Scholar 

  7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (Poster) (2015)

    Google Scholar 

  8. Kok, I., Simsek, M.U., Özdemir, S.: A deep learning model for air quality prediction in smart cities. In: BigData, pp. 1983–1990 (2017)

    Google Scholar 

  9. Krishan, M., Jha, S., Das, J., Singh, A., Goyal, M.K., Sekar, C.: Air quality modelling using long short-term memory (lSTM) over NCT-Delhi, India. Air Qual. Atmos. Health 12(8), 899–908 (2019)

    Article  Google Scholar 

  10. Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks for action segmentation and detection. In: CVPR, pp. 1003–1012 (2017)

    Google Scholar 

  11. Li, X., Peng, L., Hu, Y., Shao, J., Chi, T.: Deep learning architecture for air quality predictions. Environ. Sci. Pollut. Res. 23(22), 22408–22417 (2016). https://doi.org/10.1007/s11356-016-7812-9

    Article  Google Scholar 

  12. Liu, D., Lee, S., Huang, Y., Chiu, C.: Air pollution forecasting based on attention-based LSTM neural network and ensemble learning. Expert Syst. J. Knowl. Eng. 37(3), e12511 (2020)

    Google Scholar 

  13. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML, pp. 807–814 (2010)

    Google Scholar 

  14. Ong, B.T., Sugiura, K., Zettsu, K.: Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM2.5. Neural Comput. Appl. 27(6), 1553–1566 (2016)

    Article  Google Scholar 

  15. Qi, Z., Wang, T., Song, G., Hu, W., Li, X., Zhang, Z.: Deep air learning: interpolation, prediction, and feature analysis of fine-grained air quality. IEEE Trans. Knowl. Data Eng. 30(12), 2285–2297 (2018)

    Article  Google Scholar 

  16. Tong, W., Li, L., Zhou, X., Hamilton, A., Zhang, K.: Deep learning PM 2.5 concentrations with bidirectional LSTM RNN. Air Qual. Atmos. Health 12(4), 411–423 (2019). https://doi.org/10.1007/s11869-018-0647-4

    Article  Google Scholar 

  17. Wang, B., Yan, Z., Lu, J., Zhang, G., Li, T.: Deep multi-task learning for air quality prediction. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11305, pp. 93–103. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04221-9_9

    Chapter  Google Scholar 

  18. Yi, X., Zhang, J., Wang, Z., Li, T., Zheng, Y.: Deep distributed fusion network for air quality prediction. In: KDD, pp. 965–973 (2018)

    Google Scholar 

  19. Zheng, Y., et al.: Forecasting fine-grained air quality based on big data. In: KDD, pp. 2267–2276 (2015)

    Google Scholar 

  20. Loy-Benitez, J., Heo, S., Yoo, C.: Imputing missing indoor air quality data via variational convolutional autoencoders: implications for ventilation management of subway metro systems. Build. Environ. 182, 107135 (2020)

    Article  Google Scholar 

  21. Vo, N.N., He, X., Liu, S., Xu, G.: Deep learning for decision making and the optimization of socially responsible investments and portfolio. Decis. Support Syst. 124, 113097 (2019)

    Article  Google Scholar 

  22. Vo, N.N., Liu, S., Li, X., Xu, G.: Leveraging unstructured call log data for customer churn prediction. Knowl.-Based Syst. 212, 106586 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chu, Y., Li, L., Xie, Q., Xu, G. (2021). C\(^2\)-Guard: A Cross-Correlation Gaining Framework for Urban Air Quality Prediction. In: Karlapalem, K., et al. Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12712. Springer, Cham. https://doi.org/10.1007/978-3-030-75762-5_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75762-5_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75761-8

  • Online ISBN: 978-3-030-75762-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics