Skip to main content

Instance Selection for Online Updating in Dynamic Recommender Environments

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2021)

Abstract

Online recommender systems continuously learn from user interactions that occur in a streaming manner. A fundamental challenge of online recommendation is to select important instances (i.e., user interactions) for model updates to achieve higher prediction accuracy while omitting noisy instances. In this paper, we study (1) how to select the best instances and (2) how to effectively utilize the selected instances in dynamic recommender environments. We present two instance selection strategies based on Self-Paced Learning and rating profiles. We integrate them with Factorization Machines to perform online updates. Moreover, we study the impact of contextual information in online updating. We conducted experiments on a real-world check-in dataset, which contains temporal contextual features. Empirical results demonstrate that ox ur instance selection strategies effectively balance the trade-off between prediction accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://web.archive.org/web/20180422190150/http://baltrunas.info/research-menu/frappe.

References

  1. Al-Ghossein, M., Abdessalem, T., Barré, A.: Dynamic local models for online recommendation. In: Companion Proceedings of the the Web Conference 2018, pp. 1419–1423 (2018)

    Google Scholar 

  2. Baltrunas, L., Church, K., Karatzoglou, A., Oliver, N.: Frappe: understanding the usage and perception of mobile app recommendations in-the-wild. CoRR abs/1505.03014 (2015). http://arxiv.org/abs/1505.03014

  3. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48 (2009)

    Google Scholar 

  4. Chen, J., Li, H., Xie, Q., Li, L., Liu, Y.: Streaming recommendation algorithm with user interest drift analysis. In: Shao, J., Yiu, M.L., Toyoda, M., Zhang, D., Wang, W., Cui, B. (eds.) APWeb-WAIM 2019. LNCS, vol. 11642, pp. 121–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26075-0_10

    Chapter  Google Scholar 

  5. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1082–1090 (2011)

    Google Scholar 

  6. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  7. He, X., Chen, T., Kan, M.Y., Chen, X.: TriRank: review-aware explainable recommendation by modeling aspects. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1661–1670. ACM (2015)

    Google Scholar 

  8. He, X., Zhang, H., Kan, M.Y., Chua, T.S.: Fast matrix factorization for online recommendation with implicit feedback. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 549–558 (2016)

    Google Scholar 

  9. Jiang, L., Meng, D., Mitamura, T., Hauptmann, A.G.: Easy samples first: self-paced reranking for zero-example multimedia search. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 547–556 (2014)

    Google Scholar 

  10. Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: Advances in Neural Information Processing Systems, pp. 1189–1197 (2010)

    Google Scholar 

  11. Matuszyk, P., Spiliopoulou, M.: Selective forgetting for incremental matrix factorization in recommender systems. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS (LNAI), vol. 8777, pp. 204–215. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11812-3_18

    Chapter  Google Scholar 

  12. Matuszyk, P., Vinagre, J., Spiliopoulou, M., Jorge, A.M., Gama, J.: Forgetting methods for incremental matrix factorization in recommender systems. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, pp. 947–953 (2015)

    Google Scholar 

  13. Matuszyk, P., Vinagre, J., Spiliopoulou, M., Jorge, A.M., Gama, J.: Forgetting techniques for stream-based matrix factorization in recommender systems. Knowl. Inf. Syst. 55(2), 275–304 (2018)

    Article  Google Scholar 

  14. Nasraoui, O., Cerwinske, J., Rojas, C., Gonzalez, F.: Performance of recommendation systems in dynamic streaming environments. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 569–574. SIAM (2007)

    Google Scholar 

  15. Papagelis, M., Rousidis, I., Plexousakis, D., Theoharopoulos, E.: Incremental collaborative filtering for highly-scalable recommendation algorithms. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 553–561. Springer, Heidelberg (2005). https://doi.org/10.1007/11425274_57

    Chapter  Google Scholar 

  16. Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on Data Mining, pp. 995–1000. IEEE (2010)

    Google Scholar 

  17. Rendle, S., Schmidt-Thieme, L.: Online-updating regularized kernel matrix factorization models for large-scale recommender systems. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 251–258 (2008)

    Google Scholar 

  18. Vinagre, J., Jorge, A.M.: Forgetting mechanisms for scalable collaborative filtering. J. Braz. Comput. Soc. 18(4), 271–282 (2012)

    Article  Google Scholar 

  19. Vinagre, J., Jorge, A.M., Gama, J.: Fast incremental matrix factorization for recommendation with positive-only feedback. In: Dimitrova, V., Kuflik, T., Chin, D., Ricci, F., Dolog, P., Houben, G.-J. (eds.) UMAP 2014. LNCS, vol. 8538, pp. 459–470. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08786-3_41

    Chapter  Google Scholar 

  20. Zhang, Y., Wang, H., Lian, D., Tsang, I.W., Yin, H., Yang, G.: Discrete ranking-based matrix factorization with self-paced learning. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2758–2767 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilina Thanthriwatta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thanthriwatta, T., Rosenblum, D.S. (2021). Instance Selection for Online Updating in Dynamic Recommender Environments. In: Karlapalem, K., et al. Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12713. Springer, Cham. https://doi.org/10.1007/978-3-030-75765-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75765-6_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75764-9

  • Online ISBN: 978-3-030-75765-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics