
BanditRank: Learning to Rank Using Contextual Bandits
Phanideep Gampa∗

Indian Institute of Technology (BHU) Varanasi
gampa.phanideep.mat15@iitbhu.ac.in

Sumio Fujita
Yahoo Japan Corporation
sufujita@yahoo-corp.jp

ABSTRACT
We propose an extensible deep learning method that uses rein-
forcement learning to train neural networks for offline ranking in
information retrieval (IR). We call our method BanditRank as it
treats ranking as a contextual bandit problem. In the domain of
learning to rank for IR, current deep learning models are trained on
objective functions different from the measures they are evaluated
on. Since most evaluation measures are discrete quantities, they
cannot be leveraged by directly using gradient descent algorithms
without an approximation. BanditRank bridges this gap by directly
optimizing a task-specific measure, such as mean average precision
(MAP), using gradient descent. Specifically, a contextual bandit
whose action is to rank input documents is trained using a policy
gradient algorithm to directly maximize the reward. The reward
can be a single measure, such as MAP, or a combination of several
measures. The notion of ranking is also inherent in BanditRank,
similar to the current listwise approaches. To evaluate the effec-
tiveness of BanditRank, we conducted a series of experiments on
datasets related to three different tasks, i.e., web search, commu-
nity, and factoid question answering. We found that it performs
better than state-of-the-art methods when applied on the ques-
tion answering datasets. On the web search dataset, we found that
BanditRank performed better than four strong listwise baselines
including LambdaMART, AdaRank, ListNet and Coordinate Ascent.

CCS CONCEPTS
• Information systems → Learning to rank; Novelty in infor-
mation retrieval.

KEYWORDS
Information Retrieval, Learning to Rank, Question Answering, Web
Search, Contextual bandits, Policy Gradient, REINFORCE

ACM Reference Format:
Phanideep Gampa and Sumio Fujita. 2019. BanditRank: Learning to Rank
Using Contextual Bandits. In ,. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

∗Work conducted while the first author was in research internship at Yahoo! JAPAN
Research

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Arxiv, ACM
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Learning to rank is an important sub-field of information retrieval
(IR), which involves designing models that rank documents corre-
sponding to a query in order of their relevance. Considering the
type of learning approach used, all ranking models can be classified
into three categories, i.e., pointwise, pairwise, and listwise. The
ranking models are either trained on indirect objective functions,
such as classification related functions, or direct objective functions
related to the evaluation measures. Direct optimization of IR mea-
sures has been a long standing challenge in the learning-to-rank
domain. If we only consider bounded IR measures such as MAP,
a theoretical justification is provided regarding the superiority of
direct optimization techniques [31]. That study states that if an
algorithm can directly optimize an IR measure on the training data,
the ranking function learned with the algorithm will be one of the
best ranking functions one can obtain in terms of expected test
performance with respect to the same IR measure. Several algo-
rithms have been developed that use direct optimization, and they
can be grouped into three categories. The algorithms in the first
category try to optimize the surrogate objective functions, which
are either upper bounds of IR measures [7, 51, 55] or smooth ap-
proximations of IR measures [12, 41]. The algorithms in the second
category smoothly approximate the true gradient of the evaluation
measures, similar to LambdaRank [4, 5, 10, 54]. The algorithms in
the third category directly optimize evaluation measures in the
form of rewards without any approximation using reinforcement
learning such as MDPRank [48, 58]. However, except for some algo-
rithms like LambdaRank, most of the algorithms in all the categories
are only suitable for models with less parameters [10] making it
difficult to use deep neural networks, which are quite effective.

Deep learning [21] models have been proven to be effective with
state-of-the-art results in many machine learning applications such
as speech recognition, computer vision, and natural language pro-
cessing, which leads to the introduction of neural networks in IR.
Neural networks have been used for functions such as automatic
feature extraction and comparison and aggregation of local rele-
vance [13, 16, 17, 26, 42]. But, the neural networks are generally
trained on objective functions such as cross entropy, which is not
related to the evaluation measures. They do not have information
about the measures that they are going to be evaluated on, i.e., the
objective functions indirectly optimize the evaluation measures.
Since most evaluation measures such as MAP, mean reciprocal rank
(MRR), and normalized discounted cumulative gain (nDCG) are not
differentiable, they cannot be used as the objective functions for
training the neural networks.

For leveraging the efficacy of neural networks and superiority of
direct optimization, we propose an extensible deep learning method
called BanditRank. BanditRank formulates ranking as a contextual
bandit problem and trains neural networks using the policy gra-
dient algorithm [38], for directly maximizing the target measures.

ar
X

iv
:1

91
0.

10
41

0v
1

 [
cs

.I
R

]
 2

3
O

ct
 2

01
9

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Arxiv, ACM Phanideep Gampa and Sumio Fujita

Contextual bandit is a type of reinforcement learning algorithm
used in decision-making scenarios in which an action has to be
taken by an agent depending on the provided context. The exact
details of the formulation are provided in Section 3. BanditRank
follows the listwise approach by treating a query and the corre-
sponding candidate documents as a single instance for training.
BanditRank is extensible in the sense that it provides a method-
ology for training neural networks using reinforcement learning
for ranking. Therefore, it can be used with any text-matching ar-
chitecture for feature extraction and jointly trained or it can use
the features extracted from a pre-trained model. For example, the
LETOR 4.0 dataset [30] provides 46-dimensional feature vectors
corresponding to each query-document pair that can be leveraged
directly for training. Since BanditRank is a deep learning method,
it is also extensible with respect to the choice of architectures that
can be used. We focused on offline ranking tasks in which external
relevance labels are provided for training.

Empirically, we prove that BanditRank is superior when com-
pared to other strong baselines. We conducted a series of experi-
ments on three datasets in the domains of question answering and
web search. The major contributions of this paper are summarized
as follows:

• For training neural networks by directly optimizing evalua-
tion measures using gradient descent algorithms, we formu-
late the ranking problem as a contextual bandit and introduce
a new deep learning method called BanditRank for ranking.

• To the best of our knowledge, BanditRank is the first list-
wise deep learning method that uses reinforcement learning
to train neural networks for offline ranking purposes. We
enabled this by introducing a hybrid training objective in
order to solve the exploration problem when the number of
possible actions is large.

• BanditRank provided state-of-the-art results when applied
on both InsuranceQA [11] and WikiQA [52] datasets outper-
forming the previous best method at the time of writing of
this paper.

• In the web-search task, when applied on the benchmark
MQ2007 [30] dataset using only the provided 46-dimensional
features, BanditRank achieved better results than the state-
of-the-art learning-to-rank algorithm LambdaMART [4] and
clearly outperformed other listwise baselines such as Coor-
dinateAscent [24], ListNet [6], and AdaRank [51].

The remainder of the paper is structured as follows. In the next
section, we briefly discuss related studies. In Section 3, we give
the formulation of ranking as a contextual bandit. In Section 4, we
provide the details of the model architecture used for our exper-
iments. We explain the experiments we conducted along with a
comparative study of rewards in Section 5. We conclude the paper
in Section 6.

2 RELATEDWORK
BanditRank is similar to BanditSum [9], which was proposed earlier
for extractive summarization tasks in NLP. BanditSum introduces
a theoretically grounded method based on contextual bandit for-
malism for training neural-network-based summarizers with rein-
forcement learning. We have adapted the formulation of ranking

as a contextual bandit from that of BanditSum. Adaptation of the
contextual bandit framework to the ranking problem is not straight-
forward at all, for example, a naive application of BanditSum suffers
from inadequate exploration when the number of actions is very
large which is prevalent in ranking tasks. Thus we propose the
use of hybrid loss for leveraging the feedback from a supervised
loss function as explained in Section 3.4. Reinforcement learning
was used for directly optimizing measures such as BLEU [27] and
ROUGE [23] in different tasks of natural language processing such
as summarization and sequence prediction [1, 22, 28, 33].

In the domain of learning-to-rank for IR, MDPRank [48] uses
reinforcement learning for ranking by formulating ranking as a se-
quential decision process. Since the sequential models are affected
by the order of the decisions, they may be biased towards selecting
documents with low relevance level at the beginning. MDPRank
is not suitable for training neural networks because a model with
only 46 weight parameters requires more than 10000 epochs for
convergence. In contrast, BanditRank is suitable for deep architec-
tures, and all the best results of BanditRank were achieved in less
than 30 epochs of training. Another issue with the setting of MD-
PRank is that the number of possible rankings for a query q with nq
number of candidate documents is nq !, which is quite large making
exploration more difficult. In contrast, BanditRank has more flexi-
bility and freedom to explore the search space, as it samples a fixed
number of documentsM without replacement based on the affinity
scores during training, reducing the search space to nqPM << nq !
for smallM . This is because BanditRank uses listwise approach by
treating all the candidate documents corresponding to a query as a
single state. The policy gradient algorithm was also used to train
the generator of IRGAN [44], but the rewards for the generator
depend on the scoring function learned by the discriminator. The
training of IRGAN is similar to that of SeqGAN [53], which is based
on the idea of using the policy gradient algorithm for tackling the
generator differentiation problem due to the discrete outputs pro-
duced by the generator. Both Bandits [18, 20, 32] and MDPs [56]
were used to model the interactive process between a search en-
gine and user with the user providing implicit relevance feedback.
An overview of approaches that use reinforcement learning for
different IR tasks such as query reformulation, recommendation
and session search can be found in a previous paper [58]. Bandi-
tRank’s action is similar to the formulation of ListNet [6], which is
based on the permutation of the input documents. However, both
approaches differ with respect to the training method and structure
of the probability model used.

3 BANDITRANK FORMULATION
We formulate ranking as a contextual bandit trained using policy
gradient reinforcement learning. A bandit is a decision-making
algorithm in which an agent repeatedly chooses one out of several
actions and receives a reward based on this choice. The goal of
the agent is to maximize the cumulative reward it achieves by
learning the actions that yield good rewards. The term agent is
generally used to refer to an entity or model that interacts with the
environment. Contextual Bandit is a variant of the bandit problem
that conditions its action on the context or state of the environment
and observes the reward for the chosen action only. It forms a

BanditRank: Learning to Rank Using Contextual Bandits Arxiv, ACM

subclass of Markov decision processes with the length of each
episode being one. Formally, assume there is an environment with
context space X and action space A. The agent interacts with the
environment in a series of time steps. At each time step t , the agent
observes a context xt ∈ X , chooses an action at ∈ A, and observes
a reward for that action r (at). The goal of the agent is to maximize
the cumulative rewards it achieves over a certain period.

Now, we can formulate the ranking problem as a contextual
bandit with the environment being the dataset of queries and docu-
ments. The set of query-document pairs corresponding to a single
query is treated as a context, and each permutation of the candidate
documents is treated as a different action. Formally, given a query
q and its candidate documents d = {d1,d2, . . . ,dnq }, each context
is the set c given by c = {(q,d1), (q,d2), . . . , (q,dnq)}. Where nq is
the number of candidate documents of q, and the cardinality of c is
given by nc = nq . Given c , the action of the agent is given by the
permutation ac = (dk1 ,dk2 , . . . ,dknq) of the candidate documents,
where kt ∈ {1, 2, . . . ,nq } and kt , kt ′ for t , t ′. The reward is
given by a scalar function R(ac ,дc) that takes action ac and the
ground-truth permutation дc corresponding to c as the input. The
дc is nothing but the candidate documents sorted in descending
order according to their relevance levels. The notation R is a scalar
reward function defined using a combination of measures such as
MAP and MRR.

The action taken by the agent is determined by its policy. In
the current formulation, a policy is a neural network pθ (.|c) pa-
rameterized by θ . For each input c , pθ (.|c) encodes a probability
distribution over permutations of the candidate documents. The
goal is to find θ that cause the network to assign high probability to
the permutations, which can yield good rewards induced by R. This
can be achieved by maximizing the following objective function
with respect to θ :

J (θ) = E[R(ac ,дc)], (1)

where the expectation is taken over c paired with дc and ac gen-
erated according to pθ (.|c). The above objective function is a stan-
dard objective function used in the reinforcement-learning domain,
which maximizes the expected reward. The negative of the expec-
tation can be treated as the loss function.

3.1 Structure of Policy pθ (.|c)
The exact action of the agent depends on the chosen structure of
pθ (.|c). We follow the approach used for extractive summariza-
tion [9] because of its simplicity and effectiveness. With this ap-
proach, pθ (.|c) is decomposed into a deterministic function πθ ,
which contains all the network’s parameters, and µ, a probability
distribution induced by the output of πθ defined as

pθ (.|c) = µ(.|πθ (c)) (2)

Provided a c corresponding to a q, the network πθ outputs a real
valued vector of document affinities within the range [0, 1]. The
length of the vector is equal to the number of candidate documents
nc corresponding to q, i.e., πθ (c) ∈ Rnc . The affinity score of a
document di given by πθ (c)i represents the network’s propensity
to keep the document at the top position in the output permuta-
tion. Specifically, the interpretation of the affinity scores is highly
dependent upon the type of reward signal used. For example, if

only Precision@1 is used as the reward signal, the focus of the net-
work would mainly be on the permutations that contain a relevant
document at the first position.

Provided the above document affinities πθ (c), µ implements a
process of repeated sampling without replacement by repeatedly
normalizing the set of affinities of documents not yet selected. In
total, M unique documents are sampled yielding an ordered sub-
set of the candidate documents. For exploring the action space,
a small probability ϵ of sampling uniformly from all remaining
documents is included at each step of the sampling. This is simi-
lar to the ϵ-greedy technique generally used in the reinforcement
learning problems for exploration. According to the prescribed def-
inition of µ, the probability pθ (ac |c) of producing a permutation ac
corresponding to c according to (2) is given by

pθ (ac |c) =
M∏
i=1

(
ϵ

nc − i + 1
+

(1 − ϵ)πθ (c)ki
z(c) − ∑i−1

l=1 πθ (c)kl

)
, (3)

where kt is the index to the t-th document in ac , dkt and z(c) =∑nc
m=1 πθ (c)m . We defineM =min(nc ,M ′), whereM ′ is an integer

hyper parameter that depends on the environment or dataset. This
sampling method with exploration is followed only during training
time. At test time, we output all the candidate documents sorted in
descending order according to their affinity scores.

3.2 Policy Gradient Reinforcement Learning
The gradient of the objective function (1) cannot be calculated di-
rectly as ac is discretely sampled while calculating R(ac ,дc). This
is a common situation in most reinforcement-learning tasks. How-
ever, the gradient of the objective function can be calculated after a
reformulation of the expectation term according to the REINFORCE
algorithm [38, 49]. It tells us that the gradient of that function can
be calculated using the following equation:

∇θ J (θ) = E[∇θ logpθ (ac |c)R(ac ,дc)], (4)

where the expectation is over the same variables as (1).
Given a context-true permutation pair (c,дc) sampled from the

dataset or environment D(c,дc), the gradient can be derived using
the following reformulation of the expectation in (1):

∇θ J (θ) = ∇θE[R(ac ,дc)]
= ∇θE(c,дc)∼D(c,дc),ac∼pθ (. |c)[R(ac ,дc)]

=
∑

(c,дc)∼D(c,дc)

∑
i

∇θpθ (aic |c)R(aic ,дc) (5)

=
∑

(c,дc)∼D(c,дc)

∑
i
pθ (aic |c)∇θ logpθ (aic |c)R(aic ,дc) (6)

= E(c,дc)∼D(c,дc),ac∼pθ (. |c)[∇θ logpθ (ac |c)R(ac ,дc)]
= E[∇θ logpθ (ac |c)R(ac ,дc)]

Step (5) follows from the definition of expectation for discrete quan-
tities and the linearity of the gradient operator. Step (6) is the
reformulation of the gradient term, which is an important step in
the derivation initially given by the REINFORCE [49] algorithm.
The expectation in (4) is empirically calculated by first sampling
a context-true permutation pair (c,дc), sampling B permutations
a1c ,a

2
c , . . . ,a

B
c from pθ (.|c) using the sampling method mentioned

Arxiv, ACM Phanideep Gampa and Sumio Fujita

in Section 3.1, and finally taking the average. Empirically, the inner
expectation of (4) is given by

∇θ Jc (θ) ≈
∑B
i=1 ∇θ logpθ (aic |c)R(aic ,дc)

B
(7)

The number B is also an integer hyperparameter that mainly de-
pends on the dataset. Given the expression for pθ (ac |c) (3), the gra-
dient (7) can be calculated by any automatic differentiation package.
As mentioned in Section 3.1, we sampleM =min(nc ,M ′) number
of documents from the candidate documents during training time.
Therefore, we take reward feedback from anM-length ordered sub-
set. Since we cannot efficiently explore the whole action space for
largeM as the number of possible actions or permutations would
then become nc PM 1, we chooseM based on the average number
of relevant documents per query in the dataset. The B determines
the exact number of actions we explore for each context during
each epoch, which can be seen from the approximation in (7). In
our experiments, we obtained very good results even-though B was
set to be small, i.e., B = 20 or B = 30.

The gradient estimate in (7) is prone to have high variance [38].
Moreover, all target measures, such as MAP, MRR, and nDCG, are
always non negative, which increases the probability of every sam-
pled permutation according to the objective function.Wewould pre-
fer the probability of a bad permutation in terms of reward should
be decreased. We use a baseline function, which is subtracted from
all rewards. This decreases the variance of the estimate by acting as
an advantage function, and it ensures that the permutations with
low rewards receive negative rewards. If chosen appropriately, the
advantage function can significantly reduce the variance of the
estimate [38] without biasing the estimate. Using a baseline rbase ,
the sample-based estimate (7) becomes

∇θ Jc (θ) ≈
∑B
i=1 ∇θ logpθ (aic |c)[R(aic ,дc) − rbase]

B
(8)

For choosing the baseline function, we follow the terminology
of self-critical reinforcement learning, in which the test time per-
formance of the current model is used as the baseline [9, 28, 33, 35].
Therefore, while calculating the gradient estimate (8) after sampling
the context-true permutation pair (c,дc), we greedily generate a
permutation using the current model similar to the test time action.

a
дreedy
c = argmax

ac
pθ (ac |c) (9)

The baseline for a c is then calculated by setting rbase = R(aдreedyc ,дc).
Therefore, all the permutations with reward greater than the greedy
permutation receive positive rewards and other permutations re-
ceive negative rewards. The baseline is also intuitive in the way
that it is different for different contexts.

3.3 Reward Function R
As mentioned earlier, the reward function can be a single target
measure or a combination of several measures. For the question
answering datasets, the following reward function was used:

R(ac ,дc) =
AP(ac ,дc) + RR(ac ,дc)

2
(10)

1Permutation nPr is an increasing function of r .

For the web search dataset, the following reward function was used:

R′(ac ,дc) =
AP(ac ,дc) + nDCG@10(ac ,дc)

2
, (11)

where the measures average precision (AP), reciprocal rank (RR),
and nDCG@10 are traditional IR measures. In the experiments
section, we also provide a simple comparison of different reward
functions on the web search dataset.

3.4 Hybrid Training Objective
As mentioned in the Section 3.2, the problem of exploring the
action space when M is large can be tackled using a hybrid loss,
which is a combination of the reinforcement learning loss and a
standard supervised learning loss such as binary cross entropy. The
supervised loss can guide the training initially when the exploration
by the model is in the starting stages for largeM . Even though the
number of actions explored with the model at each epoch given by
B is small for largeM , i.e., B << nc PM , a supervised signal can help
the model by compensating the loss incurred due to the inefficient
exploration. The hybrid loss function is given as follows:

Lhybr id = γLr l + (1 − γ)Lsl (12)

where Lr l is the loss given by the reinforcement-learning algorithm,
which is the negative of (1), and Lsl is a supervised loss such as
binary cross entropy. The notation γ is a scaling factor accounting
for the difference in magnitude between Lr l and Lsl . It is a hyper-
parameter lying between 0 and 1. We found the hybrid loss to be
effective in the case of the web search dataset where the average
number of relevant documents per query was equal to 10.3. Since
we use binary cross entropy as the supervised loss, the hybrid train-
ing objective is a blend of the pointwise objective function Lsl and
a listwise objective function Lr l . The hybrid training objective still
has direct control over the target measures weighted by γ . Sim-
ilar hybrid loss was used in the domain of NLP in some papers,
e.g., [28, 50].

4 MODEL ARCHITECTURE
In this section, we discuss the neural architecture πθ we used in our
experiments. For demonstrating the extensibility of BanditRank,
we considered two scenarios for the experiments and show that
BanditRank performs well in both the scenarios.

Scenario 1
In this scenario, we decomposed πθ into two neural network ar-
chitectures fθ1 and bθ2; fθ1 for extracting the feature vectors from
raw texts of query or documents and bθ2 for a bandit network that
yields the document affinities. For fθ1, since any text-matching
neural network [3, 40, 45] that can provide a single feature vector
corresponding to each query-document pair was suitable, we have
used the architecture similar to the recently proposed Multi Cast
Attention Networks (MCAN) [40]. The bθ2 architecture was cho-
sen to be a simple feed forward neural network with an output
sigmoid unit for yielding the document affinities corresponding
to a query. While training, the two architectures were treated as
a single architecture by positioning the bandit network on top
of the text-matching network. Formally, provided with a context

BanditRank: Learning to Rank Using Contextual Bandits Arxiv, ACM

c = {(q,d1), (q,d2), . . . , (q,dnq)}, we passed it through both net-
works to obtain the document affinities πθ (d) as given below:

fθ1(c) = c1, c2, . . . , cnq
bθ2(c1, c2, . . . , cnq) = πθ (d)

where ci is a feature vector corresponding to the query-document
pair (q,di).

Scenario 2
In this scenario, we have only used bθ for training. The feature
vectors corresponding to the query and document texts were ex-
tracted using a pre-trained neural language model such as BERT [8],
which is a state-of-the-art unsupervised language model in NLP. In
web search datasets, such as MQ2007 [30], 46-dimensional feature
vectors composed of basic features including BM25, term frequency
(TF), and LMIR, are provided for each query-document pair. We
directly use those vectors while conducting experiment on MQ2007
dataset. Formally, provided with the query-document feature vec-
tors c1, . . . , cnq corresponding to a context c = {(q,d1), . . . , (q,dnq)},
we have obtained the document affinities πθ (d) as given below :

bθ (c1, c2, . . . , cnq) = πθ (d)
These scenarios are intended for separating the functionality of
the text-matching and bandit networks. Therefore, the inputs and
outputs are not necessarily in the above prescribed format.

The results obtained in both the scenarios indicate that the bandit
network is not entirely dependent on a text-matching network for
providing good results. The exact details of the scenarios and the
neural network architectures used for each dataset are provided in
the experiments section 2.

5 EXPERIMENTS
We conducted our experiments on three different datasets in the
domains of question answering and web search. For the question an-
swer ring task, we tested BanditRank on InsuranceQA [11], which
is a community question answering dataset (closed domain), and
on WikiQA [52], which is a well studied factoid question answer-
ing dataset (open domain). For the web search task, we conducted
our experiments on the benchmark MQ2007 [30] dataset. Since
the baselines and evaluation measures are different for the above
three datasets, we divide this section into three subsections each
dealing with a specific dataset. For each dataset, we provide the
details of the architecture used, implementation details, details of
the baselines, and obtained results. We adopted Scenario 1 for the
InsuranceQA dataset and Scenario 2 for the MQ2007 dataset and
compared both scenarios on the WikiQA dataset. Finally, we con-
ducted a comparative study on different reward choices for training
on the MQ2007 dataset. We choose the exploration probability
mentioned in Section 3.1 as ϵ = 0.1 for all the experiments.

5.1 Experiment 1: InsuranceQA
5.1.1 Dataset and Evaluation Measures. InsuranceQA [11] is a well
studied community question answering dataset 3 with questions
submitted by real users and answers composed by professionals

2We will make our implementation publicly available when the paper is accepted.
3https://github.com/shuzi/insuranceQA

with good domain knowledge. In this task, BanditRank was ex-
pected to select the correct answer among a pool of candidate
answers with negative answers randomly sampled from the whole
dataset. The dataset consists of two test datasets for evaluation. The
evaluation measure for this task was Precision@1. The statistics of
the dataset along with the average number of relevant answers per
question are given in Table 1.

Table 1: Statistics of InsuranceQA dataset

Split # of questions # of correct answers # of avg-rel-per-q
train 12887 18540 1.43
dev 1000 1454 1.45
test1 1800 2616 1.45
test2 1800 2593 1.44

5.1.2 Model and Implementation Details. We used two architec-
tures for Scenario 1. For the text matching part, we used the ar-
chitecture of the recently proposed Multi Cast Attention Network
(MCAN) [40]. Specifically, we used the same architecture until the
mean max pooling operation layer of the MCAN, which provides a
fixed dimensional feature vector of each question or answer sen-
tence. We used the sum function (SM) as the compression function
for casting the attention. For the bandit network, we modified the
prediction layer of MCAN with a sigmoid unit in the output layer
and kept the two highway layers [37] intact. We conducted the
experiments by replacing the highway networks with simple neu-
ral networks with the same dimensions, but the best results were
obtained when highway layers were used. Highway networks [37]
are gated nonlinear transform layers that control the information
flow similar to the LSTM layers [15] for sequential tasks.

We randomly initialized the embedding matrix with 100 dimen-
sional vectors sampled from standard normal distribution and fixed
them during training. The hidden size of the LSTM layers was set to
300. The dimensions of the two highway prediction layers were set
to 200 with ReLU being the activation function. Once we obtained
the feature vectors corresponding to the question and answer sen-
tences from the text-matching network as hq ,ha ∈ R600, we passed
the following vector hqa = [hq ;ha ;hq ⊙ ha ;hq − ha] ∈ R2400 to
the bandit network, where ⊙ is the pointwise multiplication opera-
tion and [.; .] is a vector concatenation operator. The vectors hqa
correspond to the query-document feature vectors ci mentioned
in Section 4. Before passing hqa to the highway layers of bandit
network, we used a single feed forward layer with a ReLU activa-
tion function for projecting hqa into a 200-dimensional space. A
dropout of 0.2 was applied to all layers except the embedding layer.
The sequences were padded to their batch-wise maximums. We
optimized the model using the Adam optimizer [19] with the beta
parameters set to (0.9, 0.999) and a weight decay of 1e−6 was used
for regularization. We used the hybrid training objective defined in
Eq. (12) with γ tuned over the set of values [0.5, 0.75, 1]. An initial
learning rate of 5e−5 was used for BanditRank with γ = 1 and 1e−4
for BanditRank with other γ values. We set M ′,B to M ′ = 5 and
B = 20 for calculating the gradient in Eq. (8). For BanditRank with
γ = 0.75,M ′ was set to 20. We used the reward function defined as
Eq. (10) during training.

Arxiv, ACM Phanideep Gampa and Sumio Fujita

Table 2: Precision@1 for InsuranceQA dataset. Best results
are in bold and second best are underlined.

test-1 test-2
IR model [2] 0.551 0.508
QA-CNN [36] 0.6133 0.5689
LambdaCNN [36, 57] 0.6294 0.6006
IRGAN [44] 0.6444 0.6111
CNN with GESD [11] 0.653 0.61
Attentive LSTM [39] 0.69 0.648
IARNN-Occam [43] 0.689 0.651
IARNN-Gate [43] 0.701 0.628
Comp-Agg(MULT) [45] 0.752 0.734
Comp-Agg(SUBMULT+NN) [45] 0.756 0.723
BanditRank(γ = 1) 0.8494 0.8283
BanditRank(γ = 0.75) 0.8572 0.8522

5.1.3 Baselines and Results. We compared the performance of Ban-
ditRank against all current methods that achieved significant re-
sults on this dataset. The competitive baselines are the IR model [2],
CNN with GESD (from the authors who created the InsuranceQA
dataset) [11], Attentive LSTM [39], IARNN-Occam [43], IARNN-
Gate [43], QA-CNN [36], LambdaCNN [36, 57], IRGAN [44], and
the method with the previous best P@1 measure, Comp-Agg [45].
A description of all the baselines can be found in previous stud-
ies [44, 45]. As the testing splits were the same for all methods, we
report the P@1 measures directly from those studies.

The results in Table 2 indicate the superiority of BanditRank
over all other methods. BanditRank with γ = 1 achieved the second
best P@1 measure, this is equivalent to training the model only
with the reinforcement loss. The results further improved using
a hybrid loss with γ = 0.75 weight to the reinforcement loss Lr l .
Therefore, providing some weight to the supervised loss improved
the performance of BanditRank. BanditRank exhibited significant
improvement in P@1 measure by 13.3% on the test-1 dataset and
16.1% on the test-2 dataset when compared to the previous best
method.

5.2 Experiment 2: WikiQA
5.2.1 Dataset and Evaluation Measures. WikiQA [52] is a well-
known open domain question answering dataset in contrast to
InsuranceQA, which is a closed domain question answering dataset.
The dataset was constructed from real queries on Bing andWikipedia.
In this task, the models were expected to rank the candidate an-
swers according to the question. The evaluation measures for this
task were MAP and MRR. The statistics of the dataset are given in
Table 3.

Table 3: Statistics of WikiQA dataset

Split # of questions # of correct answers # of avg-rel-per-q
train 873 1040 1.19
dev 126 140 1.11
test 243 293 1.20

5.2.2 Model and Implementation details. We considered both the
scenarios given in Section 4 for WikiQA dataset. For Scenario 1, we
used the same setting ofMCAN as InsuranceQA. The only difference
was the type of embedding used. We initialized the embedding
matrix with 300-dimensional GloVe embeddings [29] and fixed
them during training. We used the reward function defined as
Eq. (10) during training. A dropout of 0.2 was applied to all layers
except the embedding layer. The sequences were padded to their
batch-wise maximums. We optimized the model using the Adam
optimizer [19] with the beta parameters set to (0.9, 0.999), and a
weight decay of 1e−6 was used for regularization. We used the
hybrid training objective defined in Eq. (12) with γ tuned over
the set of values [0.25, 0.5, 0.75, 1]. We provide the results of the
two best performing models with respect to γ . An initial learning
rate of 5e−5 was used for BanditRank with γ = 1 and 1e−4 for
BanditRank with other γ values. We setM ′,B toM ′ = 3 and B = 20
for calculating the gradient in Eq. (8). TheM ′ was chosen according
to the average number of relevant queries, which is much less for
the WikiQA dataset.

For Scenario 2, we extracted word-level 4 features from a pre-
trained 5 BERT [8] language model, which takes a question-answer
sentence pair (q,a) as the input. There are two versions of the BERT
model available, BERT-base and BERT-large. We conducted our ex-
periments on features extracted with both versions. We used the
concatenation of word-level features obtained from the last four lay-
ers of the BERT language model for training. BERT-base produced
3072-dimensional feature vectors for each word in the input sen-
tence while BERT-large produced 4096-dimensional feature vectors
after the concatenation. These contextual word embeddings were
passed through a two-layer bidirectional LSTM layer followed by
mean pooling for obtaining a fixed dimensional representation 6 of
(q,a). These vectors correspond to the ci vectors mentioned in Sec-
tion 4. Regarding the architecture of the bandit network, we chose
a feed forward network with a single hidden layer followed by a
sigmoid unit at the output layer. Tanh was used as the activation
function. For the BanditRank method trained on features extracted
from BERT-base, we set the dimensions of the LSTM layer to 768.
For BERT-large, we set the dimensions of the LSTM layer to 1024.
For the feed forward layer, we set the dimensions of the hidden
layer to 256 for both type of features. A dropout of 0.4 was applied to
all layers. We optimized BanditRank using the Adam optimizer [19]
with the beta parameters set to (0, 0.999) and used a weight decay
of 1e−6 for regularization. We used the hybrid training objective
defined in Eq. (12) with γ tuned over the set of values [0.5, 0.75, 1].
We provide the results of the best performing model with respect
to γ . An initial learning rate of 8e−5 was used for BanditRank with
γ = 1 and 1e−4 for the BanditRank method with other γ values.
We setM ′,B toM ′ = 5 and B = 20 for calculating the gradient in
Eq. (8). We used the reward function defined with Eq. (10) during
training.

4Please note that, even-though only word level features are extracted from BERT, these
features encode contextual information of both the input sentences similar to that of a
text matching network.
5https://github.com/huggingface/pytorch-pretrained-BERT
6Although LSTM layers are used before the bandit network, we include this in Scenario
2 as the true text matching was carried out with the BERT model, LSTM layers were
only used to obtain a fixed dimensional representation of the question-answer pair.

BanditRank: Learning to Rank Using Contextual Bandits Arxiv, ACM

Table 4: Test-set performance on WikiQA dataset. Best re-
sults are in bold and second best are underlined.

MAP MRR
CNN-Cnt [52] 0.652 0.665
QA-CNN [36] 0.689 0.696
NASM [25] 0.689 0.707
Wang et al [47] 0.706 0.723
He and Lin [14] 0.709 0.723
NCE-CNN [34] 0.701 0.718
BIMPM [46] 0.718 0.731
Comp-Agg [45] 0.743 0.755
Comp-Clip [3] 0.754 0.764
Scenario 1
BanditRank(γ = 0.75) 0.6663 0.673
BanditRank(γ = 1) 0.7043 0.716
Scenario 2
BanditRank-BERT-base (γ = 1) 0.7437 0.7589
BanditRank-BERT-large (γ = 1) 0.7649 0.7807

5.2.3 Baselines and Results. We compared the performance of Ban-
ditRank against all other previous methods on this dataset. The
baselines were CNN-Cnt [52], QA-CNN [36], NASM [25], Wang
et al [47], He and Lin [14], NCE-CNN [34], BIMPM [46], Comp-
Agg [45], and the state-of-the-art method Comp-Clip [3]. Since the
testing split is same for all methods, we report the highest measures
directly from the respective papers.

The results given in Table 4 indicate the superiority of Bandi-
tRank over all other methods. BanditRank trained using the features
extracted from BERT-large produced the best results. Interestingly
in Scenario 1, we observed performance degradation when hybrid
loss was used. Although, this degradation may depend on many
factors, one possible explanation can be that the model can explore
with the help of Lr l efficiently since the average number of relevant
documents is much less. The results in Scenario 2 indicate that, pro-
vided with good features, training a text-matching network along
with the bandit network is not necessary for achieving good results.

5.3 Experiment 3: MQ2007
5.3.1 Dataset and Evaluation Measures. For the web search task,
we used the benchmark Million Query Track 2007 (MQ2007) [30]
dataset 7. In this task, BanditRank was expected to rank the docu-
ments corresponding to a query according to their relevance. Unlike
the previous tasks in which the relevance was binary, this task con-
sisted of multiple-levels of relevance with {0, 1, 2}. This dataset
provides 46-dimensional feature vectors corresponding to each
query-document pair. Moreover, the average number of relevant
documents per query was very large compared to the previous tasks.
The statistics are given in Table 5. Out of the total 1692 queries, the
number of queries with at least one relevant document was only
1455.

The loss for the above mentioned 237 query instances would
be zero as the reward generated would be zero. Therefore, we
conduct experiments on the dataset after removing the queries
7https://www.microsoft.com/en-us/research/project/letor-learning-rank-
information-retrieval/

Table 5: Statistics of MQ2007 dataset

MQ2007
of queries 1692
of q-with-rel 1455
of documents 65,323
of avg-rel-per-q 10.3
of features 46

with no relevant documents as they would not help BanditRank
during training. We carried out 60-20-20 splitting for the train-
val-test datasets after the dataset was cleaned. The baselines were
also trained and evaluated on the same splits. As per evaluation
measures, we report the measures of MAP, MRR, precision, and
nDCG at positions 1, 3, 10. We also conducted significance tests
using both paired t-test and Wilcoxon signed rank test.

5.3.2 Model and Implementation details. We used Scenario 2 for
this task. For the bandit network, we used a feed forward layer with
three highway network layers followed by an output layer with a
sigmoid unit. The dimensions of the highway layer were set to 92.
An input projection layer with an ReLU activation function was
used to project the input vectors into 92 dimensions. The provided
46-dimensional feature vectors correspond to vectors ci mentioned
in Section 4.

We used the reward function defined in Eq. (11). We chose
nDCG@10 instead of reciprocal rank (RR) for this task as the num-
ber of relevant documents was large. We optimized the model using
the Adam optimizer [19] with the beta parameters set to (0, 0.999),
and a weight decay of 1e−6 was used for regularization. We used the
hybrid training objective defined in Eq. (12) with γ tuned over the
set of values [0.25, 0.5, 0.75, 1]. The best results were obtained for
BanditRank with γ = 0.5. A dropout of 0.4 was applied to all layers.
An initial learning rate of 7e−5 was used for all models. We set
M ′,B toM ′ = 40 and B = 30 for calculating the gradient in Eq. (8).
A high value was chosen for M ′ because the number of queries
with at least 30 relevant documents was 99, which is a significant
number. Moreover, the average number of relevant documents per
query was large, i.e., 10.3.

5.3.3 Baselines and Results. We compared BanditRank with four
strong listwise baselines. The baselines were AdaRank [51], List-
Net [6], Coordinate Ascent [24] and the state-of-the-art listwise
ranking method LambdaMART [4]. All baselines were implemented
using the RankLib 8 software. As mentioned in Section 3.4, hybrid
training objective with γ = 0.5 resulted in the best performance
as BanditRank with γ = 1 cannot efficiently explore the relatively
large action space in this task.

The results given in Table 6 show that BanditRank clearly outper-
formed AdaRank, ListNet, and Coordinate Ascent. When compared
with the stronger baseline LambdaMART, except for the measures
P@10, nDCG@3, and nDCG@10, BanditRank achieved minimum
of 1% improvement in all other measures. Except for the measure
nDCG@10, the improvement shown by BanditRank on all other
measures is statistically significant according to the paired t-test
and wilcoxon signed rank test. In the next section, we discuss the
8https://sourceforge.net/projects/lemur/

Arxiv, ACM Phanideep Gampa and Sumio Fujita

Table 6: Results of MQ2007 dataset. Best results are in bold.
Statistically significant differences compared to best model
according to paired t-test is denoted as * andwilcoxon signed
rank test is denoted as + (p-value < 0.05).

P@1 P@3 P@10 MAP
ListNet 0.446*+ 0.409*+ 0.366*+ 0.452*+
AdaRank 0.474*+ 0.434*+ 0.379*+ 0.471*+
Coordinate Ascent 0.474*+ 0.435*+ 0.382*+ 0.474*+
LambdaMART 0.477*+ 0.444* 0.390*+ 0.477*+
BanditRank(γ = 1) 0.460 0.432 0.382 0.468
BanditRank(γ = 0.5) 0.498 0.457 0.393 0.483

nDCG@1 nDCG@3 nDCG@10 MRR
ListNet 0.391*+ 0.392*+ 0.435 0.556*+
AdaRank 0.432*+ 0.426*+ 0.457 0.577*+
Coordinate Ascent 0.418*+ 0.420*+ 0.449 0.574*+
LambdaMART 0.431*+ 0.434*+ 0.470* 0.582*+
BanditRank(γ = 1) 0.412 0.413 0.454 0.572
BanditRank(γ = 0.5) 0.447 0.437 0.473 0.597

behavior of different reward functions when trained on the MQ2007
dataset.

5.4 Comparison of Reward Functions
The reward function plays a significant role in the training of an
agent in reinforcement learning. Gradual feedback through rewards
is often required for training a good agent. For comparing the behav-
ior of reward functions during training, we conducted experiments
using different reward functions on the MQ2007 dataset with the
same architecture as the previous section. Since we wanted to com-
pare the behavior of the reward function, we chose γ = 1 for all the
experiments. The following reward functions were used:

R1(ac ,дc) = AP(ac ,дc)
R2(ac ,дc) = nDCG@10(ac ,дc)
R3(ac ,дc) = DCG@5(ac ,дc)

R4(ac ,дc) =
[AP + nDCG@10](ac ,дc)

2

R5(ac ,дc) =
[AP + RR](ac ,дc)

2

R6(ac ,дc) =
[AP + P@3 + P@5 + nDCG@3 + nDCG@5](ac ,дc)

5
.

The first three reward functions are the direct evaluation measures
and the last three are a combination of several evaluation measures.
Figure 1 plots the test set performance of the models during training
epochs. We can observe that R1 achieved good measures right from
the start when compared with R2 and R3. The performance of R6
when compared with R5 and R4 shows that using many evaluation
measures will not necessarily improve the measures of MAP and
nDCG@10. During the initial epochs, R4 was clearly a better per-
former than R5 and R6. After a similar performance by all three
models in the next few epochs, R4 achieved better measures of MAP
and nDCG@10 in the final stages.

Figure 1: Test set performance of BanditRank trained using
different reward functions on MQ2007 dataset. Top row cor-
responds to functions R1,R2 and R3 and bottom row corre-
sponds to functions R4,R5 and R6.

6 CONCLUSION
We proposed an extensible listwise deep learning method Bandi-
tRank for ranking. It can directly optimize the evaluation measures
using the policy gradient algorithm. Experimental results indicate
the superiority of BanditRank over other methods on the tested
datasets. Future work can involve modifying the structure of the
policy network discussed in Section 3.1 for efficiently addressing
the issue of exploration when the number of actions is large. For
example, we could use adaptive exploration strategies instead of
simple ϵ-greedy strategy, for exploring the action space. We can
define new reward functions for handling queries with no relevant
documents. For example, we can penalize the model if any of the
document affinity scores for such queries is greater than 0.5. There
is also a possibility of defining reward functions as the weighted
average of different measures with trainable weights for better
feedback. Regarding the theoretical aspects, we can compare the
directness of BanditRank to other algorithms such as LambdaRank.

REFERENCES
[1] Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe,

Joelle Pineau, AaronCourville, and Yoshua Bengio. 2016. An actor-critic algorithm
for sequence prediction. arXiv preprint arXiv:1607.07086 (2016).

[2] Michael Bendersky, Donald Metzler, and W Bruce Croft. 2010. Learning concept
importance using a weighted dependence model. In Proceedings of the third ACM
international conference on Web search and data mining. ACM, 31–40.

[3] Weijie Bian, Si Li, Zhao Yang, Guang Chen, and Zhiqing Lin. 2017. A compare-
aggregate model with dynamic-clip attention for answer selection. In Proceedings
of the 2017 ACM on Conference on Information and Knowledge Management. ACM,
1987–1990.

[4] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An
overview. Learning 11, 23-581 (2010), 81.

[5] Christopher J Burges, Robert Ragno, and Quoc V Le. 2007. Learning to rank with
nonsmooth cost functions. In Advances in neural information processing systems.
193–200.

[6] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. ACM, 129–136.

[7] Olivier Chapelle, Quoc Le, and Alex Smola. 2007. Large margin optimization of
ranking measures. In NIPS workshop: Machine learning for Web search.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

BanditRank: Learning to Rank Using Contextual Bandits Arxiv, ACM

[9] Yue Dong, Yikang Shen, Eric Crawford, Herke van Hoof, and Jackie Chi Kit
Cheung. 2018. Banditsum: Extractive summarization as a contextual bandit.
arXiv preprint arXiv:1809.09672 (2018).

[10] Pinar Donmez, Krysta M Svore, and Christopher JC Burges. 2009. On the local
optimality of LambdaRank. In Proceedings of the 32nd international ACM SIGIR
conference on Research and development in information retrieval. ACM, 460–467.

[11] Minwei Feng, Bing Xiang, Michael R Glass, Lidan Wang, and Bowen Zhou. 2015.
Applying deep learning to answer selection: A study and an open task. In 2015
IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU). IEEE,
813–820.

[12] John Guiver and Edward Snelson. 2008. Learning to rank with softrank and
gaussian processes. In Proceedings of the 31st annual international ACM SIGIR
conference on Research and development in information retrieval. ACM, 259–266.

[13] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. 2016. A deep relevance
matching model for ad-hoc retrieval. In Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management. ACM, 55–64.

[14] Hua He and Jimmy Lin. 2016. Pairwise word interaction modeling with deep
neural networks for semantic similarity measurement. In Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. 937–948.

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[16] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. Convolutional neu-
ral network architectures for matching natural language sentences. In Advances
in neural information processing systems. 2042–2050.

[17] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM international conference on
Information & Knowledge Management. ACM, 2333–2338.

[18] Sumeet Katariya, Branislav Kveton, Csaba Szepesvari, and Zheng Wen. 2016.
DCM bandits: Learning to rank with multiple clicks. In International Conference
on Machine Learning. 1215–1224.

[19] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[20] Branislav Kveton, Csaba Szepesvari, Zheng Wen, and Azin Ashkan. 2015. Cascad-
ing bandits: Learning to rank in the cascade model. In International Conference
on Machine Learning. 767–776.

[21] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436.

[22] Gyoung Ho Lee and Kong Joo Lee. 2017. Automatic Text Summarization Using
Reinforcement Learning with Embedding Features. In Proceedings of the Eighth
International Joint Conference on Natural Language Processing (Volume 2: Short
Papers). 193–197.

[23] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.
Text Summarization Branches Out (2004).

[24] Donald Metzler and W Bruce Croft. 2007. Linear feature-based models for
information retrieval. Information Retrieval 10, 3 (2007), 257–274.

[25] Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neural variational inference for text
processing. In International conference on machine learning. 1727–1736.

[26] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Jingfang Xu, and Xueqi Cheng. 2017.
Deeprank: A new deep architecture for relevance ranking in information retrieval.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management. ACM, 257–266.

[27] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting on association for computational linguistics. Association for
Computational Linguistics, 311–318.

[28] Romain Paulus, Caiming Xiong, and Richard Socher. 2017. A deep reinforced
model for abstractive summarization. arXiv preprint arXiv:1705.04304 (2017).

[29] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[30] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 datasets. arXiv preprint
arXiv:1306.2597 (2013).

[31] Tao Qin, Tie-Yan Liu, and Hang Li. 2010. A general approximation framework
for direct optimization of information retrieval measures. Information retrieval
13, 4 (2010), 375–397.

[32] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. 2008. Learning di-
verse rankings with multi-armed bandits. In Proceedings of the 25th international
conference on Machine learning. ACM, 784–791.

[33] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba.
2015. Sequence level training with recurrent neural networks. arXiv preprint
arXiv:1511.06732 (2015).

[34] Jinfeng Rao, Hua He, and Jimmy Lin. 2016. Noise-contrastive estimation for
answer selection with deep neural networks. In Proceedings of the 25th ACM
International on Conference on Information and Knowledge Management. ACM,
1913–1916.

[35] Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaibhava
Goel. 2017. Self-critical sequence training for image captioning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 7008–7024.

[36] Cicero dos Santos, Ming Tan, Bing Xiang, and Bowen Zhou. 2016. Attentive
pooling networks. arXiv preprint arXiv:1602.03609 (2016).

[37] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. 2015. Highway
networks. arXiv preprint arXiv:1505.00387 (2015).

[38] Richard S Sutton, David AMcAllester, Satinder P Singh, and YishayMansour. 2000.
Policy gradient methods for reinforcement learning with function approximation.
In Advances in neural information processing systems. 1057–1063.

[39] Ming Tan, Cicero Dos Santos, Bing Xiang, and Bowen Zhou. 2016. Improved
representation learning for question answer matching. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), Vol. 1. 464–473.

[40] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Multi-cast attention networks
for retrieval-based question answering and response prediction. arXiv preprint
arXiv:1806.00778 (2018).

[41] Michael Taylor, John Guiver, Stephen Robertson, and Tom Minka. 2008. Softrank:
optimizing non-smooth rank metrics. In Proceedings of the 2008 International
Conference on Web Search and Data Mining. ACM, 77–86.

[42] Shengxian Wan, Yanyan Lan, Jun Xu, Jiafeng Guo, Liang Pang, and Xueqi Cheng.
2016. Match-srnn: Modeling the recursive matching structure with spatial rnn.
arXiv preprint arXiv:1604.04378 (2016).

[43] Bingning Wang, Kang Liu, and Jun Zhao. 2016. Inner attention based recurrent
neural networks for answer selection. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), Vol. 1.
1288–1297.

[44] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng
Zhang, and Dell Zhang. 2017. Irgan: A minimax game for unifying generative
and discriminative information retrieval models. In Proceedings of the 40th In-
ternational ACM SIGIR conference on Research and Development in Information
Retrieval. ACM, 515–524.

[45] Shuohang Wang and Jing Jiang. 2016. A compare-aggregate model for matching
text sequences. arXiv preprint arXiv:1611.01747 (2016).

[46] Zhiguo Wang, Wael Hamza, and Radu Florian. 2017. Bilateral multi-perspective
matching for natural language sentences. arXiv preprint arXiv:1702.03814 (2017).

[47] Zhiguo Wang, Haitao Mi, and Abraham Ittycheriah. 2016. Sentence sim-
ilarity learning by lexical decomposition and composition. arXiv preprint
arXiv:1602.07019 (2016).

[48] Zeng Wei, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. 2017. Reinforce-
ment learning to rank with Markov decision process. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 945–948.

[49] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3-4 (1992), 229–256.

[50] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144 (2016).

[51] Jun Xu and Hang Li. 2007. Adarank: a boosting algorithm for information
retrieval. In Proceedings of the 30th annual international ACM SIGIR conference on
Research and development in information retrieval. ACM, 391–398.

[52] Yi Yang, Wen-tau Yih, and Christopher Meek. 2015. Wikiqa: A challenge dataset
for open-domain question answering. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing. 2013–2018.

[53] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. 2017. Seqgan: Sequence
generative adversarial nets with policy gradient. In Thirty-First AAAI Conference
on Artificial Intelligence.

[54] Fajie Yuan, Guibing Guo, Joemon M Jose, Long Chen, Haitao Yu, and Weinan
Zhang. 2016. Lambdafm: learning optimal ranking with factorization machines
using lambda surrogates. In Proceedings of the 25th ACM International on Confer-
ence on Information and Knowledge Management. ACM, 227–236.

[55] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten Joachims. 2007. A
support vector method for optimizing average precision. In Proceedings of the
30th annual international ACM SIGIR conference on Research and development in
information retrieval. ACM, 271–278.

[56] Wei Zeng, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. 2018. Multi Page
Search with Reinforcement Learning to Rank. In Proceedings of the 2018 ACM
SIGIR International Conference on Theory of Information Retrieval. ACM, 175–178.

[57] Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu. 2013. Optimizing top-n
collaborative filtering via dynamic negative item sampling. In Proceedings of
the 36th international ACM SIGIR conference on Research and development in
information retrieval. ACM, 785–788.

[58] Xiangyu Zhao, Long Xia, Jiliang Tang, and Dawei Yin. 2018. Reinforcement
Learning for Online Information Seeking. arXiv preprint arXiv:1812.07127 (2018).

	Abstract
	1 Introduction
	2 Related Work
	3 BanditRank Formulation
	3.1 Structure of Policy p(.|c)
	3.2 Policy Gradient Reinforcement Learning
	3.3 Reward Function R
	3.4 Hybrid Training Objective

	4 Model Architecture
	5 Experiments
	5.1 Experiment 1: InsuranceQA
	5.2 Experiment 2: WikiQA
	5.3 Experiment 3: MQ2007
	5.4 Comparison of Reward Functions

	6 Conclusion
	References

