Skip to main content

An Algebraic View on p-Admissible Concrete Domains for Lightweight Description Logics

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2021)

Abstract

Concrete domains have been introduced in Description Logics (DLs) to enable reference to concrete objects (such as numbers) and predefined predicates on these objects (such as numerical comparisons) when defining concepts. To retain decidability when integrating a concrete domain into a decidable DL, the domain must satisfy quite strong restrictions. In previous work, we have analyzed the most prominent such condition, called \(\omega \)-admissibility, from an algebraic point of view. This provided us with useful algebraic tools for proving \(\omega \)-admissibility, which allowed us to find new examples for concrete domains whose integration leaves the prototypical expressive DL \(\mathcal {ALC}\) decidable.

When integrating concrete domains into lightweight DLs of the \(\mathcal {EL}\) family, achieving decidability is not enough. One wants reasoning in the resulting DL to be tractable. This can be achieved by using so-called p-admissible concrete domains and restricting the interaction between the DL and the concrete domain. In the present paper, we investigate p-admissibility from an algebraic point of view. Again, this yields strong algebraic tools for demonstrating p-admissibility. In particular, we obtain an expressive numerical p-admissible concrete domain based on the rational numbers. Although \(\omega \)-admissibility and p-admissibility are orthogonal conditions that are almost exclusive, our algebraic characterizations of these two properties allow us to locate an infinite class of p-admissible concrete domains whose integration into \(\mathcal {ALC}\) yields decidable DLs.

Supported by DFG GRK 1763 (QuantLA) and TRR 248 (cpec, grant 389792660).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A structure is homogeneous if every isomorphism between its finite substructures extends to an automorphism of the whole structure.

References

  1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  Google Scholar 

  2. Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal{EL}\) envelope. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), Los Altos, Edinburgh (UK), pp. 364–369. Morgan Kaufmann (2005)

    Google Scholar 

  3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  4. Baader, F., Hanschke, P.: A schema for integrating concrete domains into concept languages. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI 1991), pp. 452–457 (1991)

    Google Scholar 

  5. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  6. Baader, F., Rydval, J.: An algebraic view on p-admissible concrete domains for lightweight description logics (extended version). LTCS-Report 20-10, Chair of Automata Theory, Institute of Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany (2020). https://tu-dresden.de/inf/lat/reports#BaRy-LTCS-20-10

  7. Baader, F., Rydval, J.: Description logics with concrete domains and general concept inclusions revisited. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12166, pp. 413–431. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51074-9_24

    Chapter  Google Scholar 

  8. Baader, F., Rydval, J.: Using model-theory to find \(\omega \)-admissible concrete domains. LTCS-Report 20-01, Chair of Automata Theory, Institute of Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany (2020). https://tu-dresden.de/inf/lat/reports#BaRy-LTCS-20-01

  9. Barto, L., Kompatscher, M., Olšák, M., Van Pham, T., Pinsker, M.: Equations in oligomorphic clones and the Constraint Satisfaction Problem for \(\omega \)-categorical structures. J. Math. Logic 19(2), 1950010 (2019)

    Article  MathSciNet  Google Scholar 

  10. Bell, P., Potapov, I.: On undecidability bounds for matrix decision problems. Theoret. Comput. Sci. 391(1–2), 3–13 (2008)

    Article  MathSciNet  Google Scholar 

  11. Bodirsky, M.: Complexity classification in infinite-domain constraint satisfaction. Mémoire d’Habilitation à Diriger des Recherches, Université Diderot - Paris 7 (2012). https://arxiv.org/abs/1201.0856

  12. Bodirsky, M., Chen, H., Kára, J., von Oertzen, T.: Maximal infinite-valued constraint languages. Theoret. Comput. Sci. 410(18), 1684–1693 (2009)

    Article  MathSciNet  Google Scholar 

  13. Bodirsky, M., Kára, J.: The complexity of temporal constraint satisfaction problems. J. ACM (JACM) 57(2), 1–41 (2010)

    Article  MathSciNet  Google Scholar 

  14. Bodirsky, M., Madelaine, F., Mottet, A.: A universal-algebraic proof of the complexity dichotomy for monotone monadic SNP. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2018), pp. 105–114 (2018)

    Google Scholar 

  15. Bodirsky, M., Pinsker, M., Pongrácz, A.: Projective clone homomorphisms. J. Symbolic Logic, 1–13 (2019). https://doi.org/10.1017/jsl.2019.23

  16. Brandt, S.: Polynomial time reasoning in a description logic with existential restrictions, GCI axioms, and–what else? In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004), pp. 298–302 (2004)

    Google Scholar 

  17. Bulatov, A.A.: A dichotomy theorem for nonuniform CSPs. In: Proceedings of the 58th Annual Symposium on Foundations of Computer Science (FOCS 2017), pp. 319–330. IEEE (2017)

    Google Scholar 

  18. Carapelle, C., Turhan, A.: Description logics reasoning w.r.t. general TBoxes is decidable for concrete domains with the EHD-property. In: Kaminka, G.A., et al. (eds.) Proceedings of the 22nd European Conference on Artificial Intelligence (ECAI 2016). Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 1440–1448. IOS Press (2016)

    Google Scholar 

  19. Cherlin, G., Shelah, S., Shi, N.: Universal graphs with forbidden subgraphs and algebraic closure. Adv. Appl. Math. 22(4), 454–491 (1999)

    Article  MathSciNet  Google Scholar 

  20. Feder, T., Vardi, M.Y.: Homomorphism closed vs. existential positive. In: Proceedings of the 18th Annual IEEE Symposium of Logic in Computer Science (LICS 2003), pp. 311–320. IEEE (2003)

    Google Scholar 

  21. Henson, C.W.: A family of countable homogeneous graphs. Pac. J. Math. 38(1), 69–83 (1971)

    Article  MathSciNet  Google Scholar 

  22. Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  23. Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  24. Hoehndorf, R., Schofield, P.N., Gkoutos, G.V.: The role of ontologies in biological and biomedical research: a functional perspective. Brief. Bioinform. 16(6), 1069–1080 (2015)

    Article  Google Scholar 

  25. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: the making of a web ontology language. J. Web Semant. 1(1), 7–26 (2003)

    Article  Google Scholar 

  26. Hubička, J., Nešetřil, J.: Homomorphism and embedding universal structures for restricted classes. J. Mult.-Valued Log. Soft Comput. 27, 229–253 (2016). https://arxiv.org/abs/0909.4939

  27. Jaax, S., Kiefer, S.: On affine reachability problems. In: Esparza, J., Král’, D. (eds.) Proceedings of the 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), vol. 170, pp. 48:1–48:14. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020)

    Google Scholar 

  28. Kegel, O.H., Wehrfritz, B.A.: Locally Finite Groups. Elsevier, Amsterdam (2000)

    Google Scholar 

  29. Labai, N., Ortiz, M., Simkus, M.: An ExpTime upper bound for \(\cal{ALC}\) with integers. In: Calvanese, D., Erdem, E., Thielscher, M. (eds.) Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020), pp. 614–623 (2020)

    Google Scholar 

  30. Lutz, C.: Combining interval-based temporal reasoning with general TBoxes. Artif. Intell. 152(2), 235–274 (2004)

    Article  MathSciNet  Google Scholar 

  31. Lutz, C., Milicic, M.: A tableau algorithm for description logics with concrete domains and general Tboxes. J. Autom. Reason. 38(1–3), 227–259 (2007)

    Article  MathSciNet  Google Scholar 

  32. Pach, P.P., Pinsker, M., Pluhár, G., Pongrácz, A., Szabó, C.: Reducts of the random partial order. Adv. Math. 267, 94–120 (2014)

    Article  MathSciNet  Google Scholar 

  33. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Proceedings of the 3rd International Conference on the Principles of Knowledge Representation and Reasoning (KR 1992), Los Altos. pp. 165–176. Morgan Kaufmann (1992)

    Google Scholar 

  34. Zhuk, D.: A proof of CSP dichotomy conjecture. In: Proceedings of the 58th Annual Symposium on Foundations of Computer Science (FOCS 2017), pp. 331–342. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Baader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baader, F., Rydval, J. (2021). An Algebraic View on p-Admissible Concrete Domains for Lightweight Description Logics. In: Faber, W., Friedrich, G., Gebser, M., Morak, M. (eds) Logics in Artificial Intelligence. JELIA 2021. Lecture Notes in Computer Science(), vol 12678. Springer, Cham. https://doi.org/10.1007/978-3-030-75775-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75775-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75774-8

  • Online ISBN: 978-3-030-75775-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics