Skip to main content

Client-Server Architecture for High-Performance RTK Service

  • Conference paper
  • First Online:
Computer Science – CACIC 2020 (CACIC 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1409))

Included in the following conference series:

  • 321 Accesses

Abstract

Global Navigation Satellite Systems (GNSS) standard accuracy varies between 2 and 10 m. This accuracy can be improved to centimeter-level in real time, using Real Time Kinematic (RTK). With RTK, a GNSS receiver with known position, a base station (BS), calculates errors and sends corrections to rovers, allowing the receiver to locate with centimeter-level accuracy. RTKLIB is an open source library, that can be included as part of software release in a device, to implement rovers or BSs. The purpose of this paper is to propose a low-cost implementation of a client-server architecture, to provide corrections in real time to rover devices, using RTKLIB and consumer-grade hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown, N., et al.: RTK rover performance using the master-auxiliary concept. In: Positioning 1.10 (2006)

    Google Scholar 

  2. Chen, L., et al.: Robustness, security and privacy in location-based services for future IoT: a survey. IEEE Access 5, 8956–8977 (2017)

    Article  Google Scholar 

  3. Computer and Business Equipment Manufacturers Association: ISO/IEC 9899:1990. Technical Report, International Organization for Standarization (1990)

    Google Scholar 

  4. Paolo D., et al.: Network real time kinematic (NRTK) positioning - description, architectures and performances. In: Satellite Positioning - Methods, Models and Applications, pp. 23–46, March 2015

    Google Scholar 

  5. Farooq, M.S., et al.: Role of IoT technology in agriculture: a systematic literature review. Electronics 9(2), 319 (2020)

    Google Scholar 

  6. Feathers, M.C.: Working Effectively with Legacy Code. Robert C. Prentice Hall PTR, Martin (2004)

    Google Scholar 

  7. Garrido-Carretero, M.S., et al.: Low-cost GNSS receiver in RTK positioning under the standard ISO-17123-8: a feasible option in geomatics. Measurement 137, 168–178 (2019)

    Article  Google Scholar 

  8. Hauschild, A.: Basic observation equations. In: Teunissen, P.J.G., Montenbruck, O. (eds.) Springer Handbook of Global Navigation Satellite Systems. SH, pp. 561–582. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42928-1_19. Chapter 19

    Chapter  Google Scholar 

  9. Henning, W.: User Guidelines for Single Base Real Time GNSS Positioning, April 2014

    Google Scholar 

  10. Hoblger, T., Jakowski, N.: Atmosferic signal propagation. In: Peter, J.G., Montenbruck, O. (eds.) Springer Handbook of Global Navigation Satellite Systems (2017). Chapter 19

    Google Scholar 

  11. Open Source Initiative. The 2-Clause BSD License (2020). https://opensource.org/licenses/BSD-2-Clause

  12. Kaplan, E.D.: Introduction. In: Kaplan, E.D., Hegarty, C.J. (eds.) Understanding GPS/GNSS Principles and Applications. Artech House (2017). Chapter 1

    Google Scholar 

  13. Liu, J., et al.: Review of GNSS ambiguity validation theory. Geo-mat. Inform. Sci. (2014)

    Google Scholar 

  14. Loosley, C., Douglas, F.: High-Performance Client/Server. Wiley (1997)

    Google Scholar 

  15. Lou, Y., et al.: An algorithm and results analysis for GPS+ BDS inter-system mix double-difference RTK. In: Geodesy Geodyn (2016)

    Google Scholar 

  16. Marais, J., Beugin, J.: Evaluation method of GNSS-based positioning functions for safety applications in operational conditions. Proc.-Soc. Behav. Sci. 48, 806–815 (2012)

    Google Scholar 

  17. Martin, R.C.: Components. In: Clean Architecture: a Craftsman’s Guide to Software Structure and Design. 1st edn. Prentice Hall Press, Hoboken (2017). Chapter 12

    Google Scholar 

  18. Moyano, J.H., et al.: Arquitectura Cliente-Servidor de Alto Rendimiento para Servicio RTK. In: XXVI Congreso Argentino de Ciencias de la Computación (CACIC) (2020)

    Google Scholar 

  19. Instituto Geográfico Nacional. POSTGAR 07 (2021). https://www.ign.gob.ar/NuestrasActividades/Geodesia/Posgar07

  20. Instituto Geográfico Nacional. Red Argentina de Monitoreo Satelital Continuo (2020). http://www.ign.gob.ar/NuestrasActividades/Geodesia/Ramsac

  21. Odijk, D.: Positioning model. In: Teunissen, P.J.G., Montenbruck, O. (eds.) Springer Handbook of Global Navigation Satellite Systems. SH, pp. 605–638. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42928-1_21. Chapter 19

    Chapter  Google Scholar 

  22. Odijk, D., Wanninger, L.: Differential positioning. In: Teunissen, P.J.G., Montenbruck, O. (eds.) Springer Handbook of Global Navigation Satellite Systems. SH, pp. 753–780. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42928-1_26. Chapter 26

    Chapter  Google Scholar 

  23. Ouyang, F., et al.: Automatic delivery and recovery system of wireless sensor networks (WSN) nodes based on UAV for agricultural applications. Comput. Electron. Agric. 162, 31–43 (2019)

    Article  Google Scholar 

  24. Perera, C., et al.: Context aware computing for the Internet of Things: a survey. IEEE Commun. Surv. Tutor. 16(1), 414–454 (2014)

    Article  Google Scholar 

  25. Preston-Werner, T.: Semantic Versioning (2021). https://semver.org/

  26. Renfro, B.A. et al.: An Analysis of Global Positioning System (GPS) Standard Positioning Service Performance for 2019. Technical Report The University of Texas at Austin, 14 May 2020

    Google Scholar 

  27. Romero-Andrade, R., et al.: Comparative analysis of precise point positioning processing technique with GPS low-cost in different technologies with academic software. Measurement 136, 337–344 (2019)

    Article  Google Scholar 

  28. Sun, Q.C., et al.: Pursuing precise vehicle movement trajectory in urban residential area using multi-GNSS RTK tracking. In: World Conference on Transport Research - WCTR 2016 Shanghai, Transportation Research Procedia, 10–15 July 2016, vol. 25 pp. 2356–2372 (2017)

    Google Scholar 

  29. Takasu, T.: RTKLIB. Ed. by GitHub, 29 December 2020. https://github.com/tomojitakasu/RTKLIB/tree/rtklib_2.4.3

  30. Takasu, T.: RTKLIB: an Open Source Program Package for GNSS Positioning. (2020). http://www.rtklib.com/

  31. Takasu, T., Yasuda, A.:Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. In: International Symposium on GPS/GNSS, January 2009

    Google Scholar 

  32. Wanninger, L.: Virtual reference stations (VRS). In: GPS Solutions 7.2, pp. 143–144, August 2003

    Google Scholar 

  33. Liu, W., et al.: A survey on context awareness. In: 2011 International Conference on Computer Science and Service System (CSSS), pp. 144–147, June 2011

    Google Scholar 

  34. Chandra Yadav, S., Kumar Singh, S.: An Introduction to Client Server Computing. New Age International Pvt. Ltd., Publishers, February 2009

    Google Scholar 

  35. Zhang, Y., et al.: Static and kinematic positioning performance of a low-cost real-time kinematic navigation system module. In: Advances in Space Research. Multi-GNSS: Methods, Benefits, Challenges, and Geosciences Applications vol. 63, no. 9, pp. 3029–3042 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José H. Moyano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moyano, J.H., Cenci, K.M., Ardenghi, J.R. (2021). Client-Server Architecture for High-Performance RTK Service. In: Pesado, P., Eterovic, J. (eds) Computer Science – CACIC 2020. CACIC 2020. Communications in Computer and Information Science, vol 1409. Springer, Cham. https://doi.org/10.1007/978-3-030-75836-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75836-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75835-6

  • Online ISBN: 978-3-030-75836-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics