Skip to main content

Privacy-Preserving Blockchain-Based Solutions in the Internet of Things

  • Conference paper
  • First Online:
Science and Technologies for Smart Cities (SmartCity360° 2020)

Abstract

Internet of Things (IoT) is a promising, relatively new technology that develops “smart” networks with a variety of uses and applications (e.g., smart cities, smart home and autonomous cars). The diversity of protocols, technologies and devices that IoT consists of, even though they add in value and utility, they create major privacy issues that can be exploited by malicious entities to benefit from or even violate privacy of IoT users. The special features of blockchain technology, such as immutability, transparency, accessibility, autonomy and decentralisation, has led the academics and the industry to search for further uses of it, besides financial applications (e.g., Bitcoin) that was initially applied. This paper is a survey on the existing literature regarding blockchain-based privacy-preserving solutions that have been proposed specifically for the IoT to address personal data protection and preserve user privacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alcaide, E.: Pysimplechain (2017). https://github.com/EricAlcaide/pysimplechain. Accessed on 5 June 2020

  2. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: 13th European Conference on Computer Systems (EuroSys). ACM, New York, NY, USA (2018). https://doi.org/10.1145/3190508.3190538

  3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy (SP), pp. 321–334. IEEE (2007). https://doi.org/10.1109/SP.2007.11

  4. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) Theory of Cryptography. pp. 315–333. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_18

  5. Buterin, V.: A next-generation smart contract and decentralized application platform (2014). https://github.com/ethereum/wiki/wiki/White-Paper. Accessed on 5 June 2020

  6. Cha, S., Tsai, T., Peng, W., Huang, T., Hsu, T.: Privacy-aware and blockchain connected gateways for users to access legacy IoT devices. In: IEEE 6th Global Conference on Consumer Electronics (GCCE), pp. 1–3. IEEE (2017). https://doi.org/10.1109/GCCE.2017.8229327

  7. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the Internet of Things. IEEE Access 4, 2292–2303 (2016). https://doi.org/10.1109/ACCESS.2016.2566339

    Article  Google Scholar 

  8. Demertzis, K., Rantos, K., Drosatos, G.: A dynamic intelligent policies analysis mechanism for personal data processing in the IoT ecosystem. Big Data Cogn. Comput. 4, 9 (2020). https://doi.org/10.3390/bdcc4020009

    Article  Google Scholar 

  9. Dorri, A., Kanhere, S.S., Jurdak, R.: Towards an optimized blockchain for IoT. In: IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI), pp. 173–178. IEEE (2017)

    Google Scholar 

  10. Drosatos, G.: Utilization and protection of personal data in ubiquitous computing environments. Ph.D. thesis, Department of Electrical and Computer Engineering, Democritus University of Thrace, University Campus, Xanthi 67100, Greece (2013). https://doi.org/10.12681/eadd/30085

  11. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) Theory and Applications of Models of Computation, pp. 1–19. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

  12. European Parliament and Council: Regulation (EU) 2016/679 of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation). Official Journal of the European Union, pp. 1–88 (2016)

    Google Scholar 

  13. Feng, Q., He, D., Zeadally, S., Khan, M.K., Kumar, N.: A survey on privacy protection in blockchain system. J. Netw. Comput. Appl. 126, 45–58 (2019). https://doi.org/10.1016/j.jnca.2018.10.020

    Article  Google Scholar 

  14. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology - CRYPTO ’86, pp. 186–194. Springer (1987). https://doi.org/10.1007/3-540-47721-7_12

  15. Firoozjaei, M., Ghorbani, A., Kim, H., Song, J.: Hy-Bridge: a hybrid blockchain for privacy-preserving and trustful energy transactions in Internet-of-Things platforms. Sensors 20(3), 928 (2020). https://doi.org/10.3390/s20030928

    Article  Google Scholar 

  16. Gai, K., Wu, Y., Zhu, L., Xu, L., Zhang, Y.: Permissioned blockchain and edge computing empowered privacy-preserving smart grid networks. IEEE Internet Things J. 6(5), 7992–8004 (2019). https://doi.org/10.1109/JIOT.2019.2904303

    Article  Google Scholar 

  17. Huynh, T.T., Nguyen, T.D., Tan, H.: A survey on security and privacy issues of blockchain technology. In: International Conference on System Science and Engineering (ICSSE), pp. 362–367. IEEE (2019). https://doi.org/10.1109/ICSSE.2019.8823094

  18. Jayasinghe, U., Lee, G.M., MacDermott, Á., Rhee, W.S.: Trustchain: a privacy preserving blockchain with edge computing. Wirel. Commun. Mobile Comput. 2019 (2019). https://doi.org/10.1155/2019/2014697

  19. Joshi, A.P., Han, M., Wang, Y.: A survey on security and privacy issues of blockchain technology. Math. Found. Comput. 1, 121–147 (2018). https://doi.org/10.3934/mfc.2018007

    Article  Google Scholar 

  20. Le, T., Mutka, M.W.: CapChain: A privacy preserving access control framework based on blockchain for pervasive environments. In: IEEE International Conference on Smart Computing (SMARTCOMP), pp. 57–64 (2018). https://doi.org/10.1109/SMARTCOMP.2018.00074

  21. Lee, M.J.W.: Guest editorial: special section on learning through wearable technologies and the internet of things. IEEE Trans. Learn. Technol. 9(4), 301–303 (2016). https://doi.org/10.1109/TLT.2016.2629379

    Article  Google Scholar 

  22. Lu, Y., Huang, X., Dai, Y., Maharjan, S., Zhang, Y.: Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Trans. Industr. Inf. 16(6), 4177–4186 (2020). https://doi.org/10.1109/TII.2019.2942190

    Article  Google Scholar 

  23. Makhdoom, I., Zhou, I., Abolhasan, M., Lipman, J., Ni, W.: PrivySharing: a blockchain-based framework for privacy-preserving and secure data sharing in smart cities. Comput. Secur. 88 (2020). https://doi.org/10.1016/j.cose.2019.101653

  24. Marchesi, M., Marchesi, L., Tonelli, R.: An agile software engineering method to design blockchain applications. In: 14th Central and Eastern European Software Engineering Conference Russia (CEE-SECR). ACM, New York, NY, USA (2018). https://doi.org/10.1145/3290621.3290627

  25. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). https://bitcoin.org/bitcoin.pdf. Accessed on 5 June 2020

  26. Noether, S., Mackenzie, A.: Monero research lab: ring confidential transactions. Ledger 1, 1–18 (2016). https://doi.org/10.5195/ledger.2016.34

    Article  Google Scholar 

  27. Ouaddah, A.: A blockchain based access control framework for the security and privacy of IoT with strong anonymity unlinkability and intractability guarantees. In: Kim, S., Deka, G.C., Zhang, P. (eds.) Role of Blockchain Technology in IoT Applications, Advances in Computers, vol. 115, pp. 211–258. Elsevier (2019). https://doi.org/10.1016/bs.adcom.2018.11.001

  28. Ouaddah, A., Abou Elkalam, A., Ait Ouahman, A.: FairAcces: a new blockchain-based access control framework for the Internet of Things. Secur. Commun. Netw. 9(18), 5943–5964 (2016). https://doi.org/10.1002/sec.1748

    Article  Google Scholar 

  29. Ouaddah, A., Elkalam, A.A., Ouahman, A.A.: Towards a novel privacy-preserving access control model based on blockchain technology in IoT. In: Rocha, Á., Serrhini, M., Felgueiras, C. (eds.) Europe and MENA Cooperation Advances in Information and Communication Technologies, pp. 523–533. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46568-5_53

  30. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) Advances in Cryptology - EUROCRYPT ’99, pp. 223–238. Springer, Berlin, Heidelberg (1999)

    Chapter  Google Scholar 

  31. Panarello, A., Tapas, N., Merlino, G., Longo, F., Puliafito, A.: Blockchain and IoT integration: a systematic survey. Sensors 18(8), 2575 (2018)

    Article  Google Scholar 

  32. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology - CRYPTO ’91, pp. 129–140. Springer, Berlin, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

  33. Rahulamathavan, Y., Phan, R.C., Veluru, S., Cumanan, K., Rajarajan, M.: Privacy-preserving multi-class support vector machine for outsourcing the data classification in cloud. IEEE Trans. Dependable Secure Comput. 11(5), 467–479 (2014). https://doi.org/10.1109/TDSC.2013.51

    Article  Google Scholar 

  34. Rahulamathavan, Y., Phan, R.C., Rajarajan, M., Misra, S., Kondoz, A.: Privacy-preserving blockchain based IoT ecosystem using attribute-based encryption. In: IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), pp. 1–6. IEEE (2017). https://doi.org/10.1109/ANTS.2017.8384164

  35. Rantos, K., Drosatos, G., Demertzis, K., Ilioudis, C., Papanikolaou, A.: Blockchain-based consents management for personal data processing in the IoT ecosystem. In: 15th International Joint Conference on e-Business and Telecommunications (ICETE) - Volume 2: SECRYPT, pp. 572–577. SCITEPRESS (2018). https://doi.org/10.5220/0006911007380743

  36. Rantos, K., Drosatos, G., Demertzis, K., Ilioudis, C., Papanikolaou, A., Kritsas, A.: ADvoCATE: A consent management platform for personal data processing in the iot using blockchain technology. In: Lanet, J.L., Toma, C. (eds.) Innovative Security Solutions for Information Technology and Communications, vol. 11359 LNCS, pp. 300–313. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12942-2_23

  37. Rantos, K., Drosatos, G., Kritsas, A., Ilioudis, C., Papanikolaou, A., Filippidis, A.P.: A blockchain-based platform for consent management of personal data processing in the IoT ecosystem. Secur. Commun. Netw. 2019, 1–15 (2019). https://doi.org/10.1155/2019/1431578

    Article  Google Scholar 

  38. Roman, R., Zhou, J., Lopez, J.: On the features and challenges of security and privacy in distributed Internet of Things. Comput. Netw. 57(10), 2266–2279 (2013). https://doi.org/10.1016/j.comnet.2012.12.018

    Article  Google Scholar 

  39. van Saberhagen, N.: CryptoNote v2.0 (2013). https://cryptonote.org/whitepaper.pdf. Accessed on 5 June 2020

  40. Sani, A.S., et al.: Xyreum: A high-performance and scalable blockchain for iiot security and privacy. In: IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 1920–1930 (2019). https://doi.org/10.1109/ICDCS.2019.00190

  41. Sasson, E.B., et al.: Zerocash: Decentralized anonymous payments from Bitcoin. In: IEEE Symposium on Security and Privacy, pp. 459–474. IEEE (2014). https://doi.org/10.1109/SP.2014.36

  42. Shah, G., Molina, A., Blaze, M.: Keyboards and covert channels. In: 15th USENIX Security Symposium (USENIX-SS) - Volume 15. USENIX Association, USA (2006)

    Google Scholar 

  43. Sharma, M., Lim, J.: A survey of methods guaranteeing user privacy based on blockchain in Internet-of-Things. In: 2nd International Conference on Data Science and Information Technology (DSIT), pp. 147–153. ACM, New York, NY, USA (2019). https://doi.org/10.1145/3352411.3352435

  44. Shen, M., Tang, X., Zhu, L., Du, X., Guizani, M.: Privacy-preserving support vector machine training over blockchain-based encrypted iot data in smart cities. IEEE Internet Things J. 6(5), 7702–7712 (2019). https://doi.org/10.1109/JIOT.2019.2901840

    Article  Google Scholar 

  45. Sousa, J., Bessani, A., Vukolic, M.: A byzantine fault-tolerant ordering service for the hyperledger fabric blockchain platform. In: 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 51–58. IEEE (2018). https://doi.org/10.1109/DSN.2018.00018

  46. Wang, W., Vong, C.M., Yang, Y., Wong, P.K.: Encrypted image classification based on multilayer extreme learning machine. Multidimension. Syst. Signal Process. 28(3), 851–865 (2017). https://doi.org/10.1007/s11045-016-0408-1

    Article  Google Scholar 

  47. Yu, Y., Li, Y., Tian, J., Liu, J.: Blockchain-based solutions to security and privacy issues in the Internet of Things. IEEE Wirel. Commun. 25(6), 12–18 (2018). https://doi.org/10.1109/MWC.2017.1800116

    Article  Google Scholar 

  48. Zhu, H., Liu, X., Lu, R., Li, H.: Efficient and privacy-preserving online medical prediagnosis framework using nonlinear SVM. IEEE J. Biomed. Health Inform. 21(3), 838–850 (2017). https://doi.org/10.1109/JBHI.2016.2548248

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the MPhil program “Advanced Technologies in Informatics and Computers”, hosted by the Department of Computer Science, International Hellenic University, Kavala, Greece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Drosatos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zapoglou, N., Patsakos, I., Drosatos, G., Rantos, K. (2021). Privacy-Preserving Blockchain-Based Solutions in the Internet of Things. In: Paiva, S., Lopes, S.I., Zitouni, R., Gupta, N., Lopes, S.F., Yonezawa, T. (eds) Science and Technologies for Smart Cities. SmartCity360° 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 372. Springer, Cham. https://doi.org/10.1007/978-3-030-76063-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76063-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76062-5

  • Online ISBN: 978-3-030-76063-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics