Abstract
In this paper we introduce MOBIUS, a smartphone-based system for remote tracking of citizens’ movements. By collecting smartphone’s sensor data such as accelerometer and gyroscope, along with self-report data, the MOBIUS system allows to classify the users’ mode of transportation. With the MOBIUS app the users can also activate GPS tracking to visualise their journeys and travelling speed on a map. The MOBIUS app is an example of a tracing app which can provide more insights into how people move around in an urban area. In this paper, we introduce the motivation, the architectural design and development of the MOBIUS app. To further test its validity, we run a user study collecting data from multiple users. The collected data are used to train a deep convolutional neural network architecture which classifies the transportation modes using with a mean accuracy of 89%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Code available at Mobius_client.
- 2.
Code available at Mobius_server.
- 3.
Code available at Visual Inspection Tool.
- 4.
Code available at Sharpflow.
- 5.
After the collection of the data we found an option to record sensor readings without gravity directly on Android devices.
References
Anderson, I., Muller, H.: Practical activity recognition using GSM data (2006)
Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289 (2015)
Di Mitri, D., Schneider, J., Klemke, R., Specht, M., Drachsler, H.: Read between the lines: an annotation tool for multimodal data for learning. In: Proceedings of the 9th International Conference on Learning Analytics & Knowledge - LAK19, pp. 51–60. ACM, New York USA (2019). https://doi.org/10.1145/3303772.3303776
Di Mitri, D., Schneider, J., Trebing, K., Sopka, S., Specht, M., Drachsler, H.: Real-time multimodal feedback with the CPR tutor. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12163, pp. 141–152. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52237-7_12
Fang, S.H., Fei, Y.X., Xu, Z., Tsao, Y.: Learning transportation modes from smartphone sensors based on deep neural network. IEEE Sens. J. 17(18), 6111–6118 (2017)
Hemminki, S., Nurmi, P., Tarkoma, S.: Accelerometer-based transportation mode detection on smartphones. In: Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems, pp. 1–14 (2013)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Jeyakumar, J.V., Lee, E.S., Xia, Z., Sandha, S.S., Tausik, N., Srivastava, M.: Deep convolutional bidirectional LSTM based transportation mode recognition. In: Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, pp. 1606–1615 (2018)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Liang, X., Zhang, Y., Wang, G., Xu, S.: A deep learning model for transportation mode detection based on smartphone sensing data. IEEE Trans. Intell. Transp. Syst. 21, 5223–5235 (2019)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using mobile phones to determine transportation modes. ACM Trans. Sens. Netw. (TOSN) 6(2), 1–27 (2010)
Savitzky, A., Golay, M.J.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627–1639 (1964)
Schneider, J., Di Mitri, D., Limbu, B., Drachsler, H.: Multimodal learning hub: a tool for capturing customizable multimodal learning experiences. In: Pammer-Schindler, V., Pérez-Sanagustín, M., Drachsler, H., Elferink, R., Scheffel, M. (eds.) EC-TEL 2018. LNCS, vol. 11082, pp. 45–58. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98572-5_4
Sohn, T., et al.: Mobility detection using everyday GSM traces. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 212–224. Springer, Heidelberg (2006). https://doi.org/10.1007/11853565_13
Stenneth, L., Wolfson, O., Yu, P.S., Xu, B.: Transportation mode detection using mobile phones and GIS information. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 54–63 (2011)
Zhao, H., Hou, C., Alrobassy, H., Zeng, X.: Recognition of transportation state by smartphone sensors using deep Bi-LSTM neural network. J. Comput. Netw. Commun. 2019, Article ID 4967261 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Di Mitri, D., Asyraaf Mat Sanusi, K., Trebing, K., Bromuri, S. (2021). MOBIUS: Smart Mobility Tracking with Smartphone Sensors. In: Paiva, S., Lopes, S.I., Zitouni, R., Gupta, N., Lopes, S.F., Yonezawa, T. (eds) Science and Technologies for Smart Cities. SmartCity360° 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 372. Springer, Cham. https://doi.org/10.1007/978-3-030-76063-2_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-76063-2_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-76062-5
Online ISBN: 978-3-030-76063-2
eBook Packages: Computer ScienceComputer Science (R0)