Skip to main content

MOBIUS: Smart Mobility Tracking with Smartphone Sensors

  • Conference paper
  • First Online:
Science and Technologies for Smart Cities (SmartCity360° 2020)

Abstract

In this paper we introduce MOBIUS, a smartphone-based system for remote tracking of citizens’ movements. By collecting smartphone’s sensor data such as accelerometer and gyroscope, along with self-report data, the MOBIUS system allows to classify the users’ mode of transportation. With the MOBIUS app the users can also activate GPS tracking to visualise their journeys and travelling speed on a map. The MOBIUS app is an example of a tracing app which can provide more insights into how people move around in an urban area. In this paper, we introduce the motivation, the architectural design and development of the MOBIUS app. To further test its validity, we run a user study collecting data from multiple users. The collected data are used to train a deep convolutional neural network architecture which classifies the transportation modes using with a mean accuracy of 89%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Code available at Mobius_client.

  2. 2.

    Code available at Mobius_server.

  3. 3.

    Code available at Visual Inspection Tool.

  4. 4.

    Code available at Sharpflow.

  5. 5.

    After the collection of the data we found an option to record sensor readings without gravity directly on Android devices.

References

  1. Anderson, I., Muller, H.: Practical activity recognition using GSM data (2006)

    Google Scholar 

  2. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289 (2015)

  3. Di Mitri, D., Schneider, J., Klemke, R., Specht, M., Drachsler, H.: Read between the lines: an annotation tool for multimodal data for learning. In: Proceedings of the 9th International Conference on Learning Analytics & Knowledge - LAK19, pp. 51–60. ACM, New York USA (2019). https://doi.org/10.1145/3303772.3303776

  4. Di Mitri, D., Schneider, J., Trebing, K., Sopka, S., Specht, M., Drachsler, H.: Real-time multimodal feedback with the CPR tutor. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12163, pp. 141–152. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52237-7_12

    Chapter  Google Scholar 

  5. Fang, S.H., Fei, Y.X., Xu, Z., Tsao, Y.: Learning transportation modes from smartphone sensors based on deep neural network. IEEE Sens. J. 17(18), 6111–6118 (2017)

    Article  Google Scholar 

  6. Hemminki, S., Nurmi, P., Tarkoma, S.: Accelerometer-based transportation mode detection on smartphones. In: Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems, pp. 1–14 (2013)

    Google Scholar 

  7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  8. Jeyakumar, J.V., Lee, E.S., Xia, Z., Sandha, S.S., Tausik, N., Srivastava, M.: Deep convolutional bidirectional LSTM based transportation mode recognition. In: Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, pp. 1606–1615 (2018)

    Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Liang, X., Zhang, Y., Wang, G., Xu, S.: A deep learning model for transportation mode detection based on smartphone sensing data. IEEE Trans. Intell. Transp. Syst. 21, 5223–5235 (2019)

    Article  Google Scholar 

  11. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using mobile phones to determine transportation modes. ACM Trans. Sens. Netw. (TOSN) 6(2), 1–27 (2010)

    Article  Google Scholar 

  13. Savitzky, A., Golay, M.J.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627–1639 (1964)

    Article  Google Scholar 

  14. Schneider, J., Di Mitri, D., Limbu, B., Drachsler, H.: Multimodal learning hub: a tool for capturing customizable multimodal learning experiences. In: Pammer-Schindler, V., Pérez-Sanagustín, M., Drachsler, H., Elferink, R., Scheffel, M. (eds.) EC-TEL 2018. LNCS, vol. 11082, pp. 45–58. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98572-5_4

    Chapter  Google Scholar 

  15. Sohn, T., et al.: Mobility detection using everyday GSM traces. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 212–224. Springer, Heidelberg (2006). https://doi.org/10.1007/11853565_13

    Chapter  Google Scholar 

  16. Stenneth, L., Wolfson, O., Yu, P.S., Xu, B.: Transportation mode detection using mobile phones and GIS information. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 54–63 (2011)

    Google Scholar 

  17. Zhao, H., Hou, C., Alrobassy, H., Zeng, X.: Recognition of transportation state by smartphone sensors using deep Bi-LSTM neural network. J. Comput. Netw. Commun. 2019, Article ID 4967261 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Di Mitri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Di Mitri, D., Asyraaf Mat Sanusi, K., Trebing, K., Bromuri, S. (2021). MOBIUS: Smart Mobility Tracking with Smartphone Sensors. In: Paiva, S., Lopes, S.I., Zitouni, R., Gupta, N., Lopes, S.F., Yonezawa, T. (eds) Science and Technologies for Smart Cities. SmartCity360° 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 372. Springer, Cham. https://doi.org/10.1007/978-3-030-76063-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76063-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76062-5

  • Online ISBN: 978-3-030-76063-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics