Abstract
Recent studies on Human Robot Interaction (HRI) have shown that different types of applications that combine metrics and techniques can help achieve a more efficient and organic interaction. This applications can be related to human care or go further and use a humanoid robot for nonverbal communication tasks. Similarly, for verbal communication, we found Question Answering, a Natural Language Processing task, that is in charge of capturing and interpret a question automatically and return a good representation of an answer. Also, recent work on creating Question Answering models, based on the Transformer architecture, have obtained state-of-the-art results. Our main goal in this project is to build a new Human Robot Interaction technique which uses a Question Answering system where we will test with college students. In the creation of the Question Answering model, we get results from state-of-the-art pre-trained models like BERT or XLNet, but also multilingual ones like m-BERT or XLM. We train them with a new Spanish dataset translated from the original SQuAD getting our best results with XLM-R, obtaining 68.1 F1 and 45.3 EM in the MLQA test dataset, and, 77.9 F1 and 58.3 EM for XQuAD test dataset. To validate the results obtained, we evaluated the project based on HRI metrics and a survey. The results demonstrate a high degree of acceptance in the students about the type of interaction that has been proposed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alenljung, B., Lindblom, J., Andreasson, R., Ziemke, T.: User experience in social human-robot interaction. Int. J. Ambient Comput. Intell. 8(2), 12–31 (2017)
Aly, A., Griffiths, S.S., Stramandinoli, F.: Metrics and benchmarks in human-robot interaction: recent advances in cognitive robotics. Cogn. Syst. Res. 43, 313–323 (2017)
Andreasson, R., Alenljung, B., Billing, E., Lowe, R.: Affective touch in human-robot interaction: conveying emotion to the nao robot. Int. J. Soc. Robot. 10, 473–491 (2018). https://doi.org/10.1007/s12369-017-0446-3
Artetxe, M., Ruder, S., Yogatama, D.: On the cross-lingual transferability of monolingual representations. In: ACL (2020)
Bertacchini, F., Bilotta, E., Pantano, P.S.: Shopping with a robotic companion. Comput. Hum. Behav. 77, 382–395 (2017)
Carrino, C.P., Costa-jussà , M.R., Fonollosa, J.A.R.: Automatic Spanish translation of the squad dataset for multilingual question answering. CoRR abs/1912.05200 (2019)
Conneau, A., et al.: Unsupervised cross-lingual representation learning at scale. In: ACL (2020)
Conneau, A., Lample, G.: Cross-lingual language model pretraining. In: NeurIPS (2019)
Dautenhahn, K.: Methodology and themes of human-robot interaction: a growing research field. Int. J. Adv. Robot. Syst. 4, 103–108 (2007)
Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (2019)
Gao, J., Galley, M., Li, L.: Neural approaches to conversational AI. Found. Trends Inf. Retr. 13, 127–298 (2019)
Joshi, M., Chen, D., Liu, Y., Weld, D.S., Zettlemoyer, L., Levy, O.: SpanBERT: improving pre-training by representing and predicting spans. Trans. ACL 8, 64–77 (2020)
Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: a lite BERT for self-supervised learning of language representations. In: ICLR (2020)
Lee, J., et al.: BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4), 1234–1240 (2020)
Lewis, P.S.H., Oguz, B., Rinott, R., Riedel, S., Schwenk, H.: MLQA: evaluating cross-lingual extractive question answering. In: ACL (2020)
Lindblom, J., Andreasson, R.: Current challenges for UX evaluation of human-robot interaction. In: Schlick, C., Trzcieliński, S. (eds.) Advances in Ergonomics of Manufacturing: Managing the Enterprise of the Future. AISC, vol. 490, pp. 267–277. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41697-7_24
Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. CoRR abs/1907.11692 (2019)
Mattioli, T., Vendittelli, M.: Interaction force reconstruction for humanoid robots. IEEE Robot. Autom. Lett. 2(1), 282–289 (2017)
Murphy, R.R., Schreckenghost, D.: Survey of metrics for human-robot interaction. In: HRI. IEEE/ACM (2013)
Pires, T., Schlinger, E., Garrette, D.: How multilingual is multilingual BERT? In: ACL (2019)
Quarteroni, S.: Natural language processing for industry - ELCA’s experience. Informatik Spektrum 41, 105–112 (2018). https://doi.org/10.1007/s00287-018-1094-1
Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100,000+ questions for machine comprehension of text. In: EMNLP (2016)
Steinfeld, A., et al.: Common metrics for human-robot interaction. In: HRI (2006)
Szűcs, V., Karolyi, G., Tatar, A., Magyar, A.: Voice controlled humanoid robot based movement rehabilitation framework. In: CogInfoCom (2018)
Tiutiunnyk, S., Dyomkin, V.: Context-based question-answering system for the Ukrainian language. In: CEUR Workshop Proceedings (2020)
Ugarte, W., Boizumault, P., Loudni, S., Crémilleux, B.: Computing skypattern cubes. In: ECAI (2014)
Ugarte, W., Boizumault, P., Loudni, S., Crémilleux, B.: Computing skypattern cubes using relaxation. In: ICTAI. IEEE (2014)
Ugarte, W., Boizumault, P., Loudni, S., Crémilleux, B.: Modeling and mining optimal patterns using dynamic CSP. In: ICTAI. IEEE (2015)
Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)
Yang, Z., Dai, Z., Yang, Y., Carbonell, J.G., Salakhutdinov, R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. In: NeurIPS (2019)
Zaib, M., Sheng, Q.Z., Zhang, W.E.: A short survey of pre-trained language models for conversational AI-a new age in NLP. In: ACSW. ACM (2020)
Zhang, Y., Chen, X., Ai, Q., Yang, L., Croft, W.B.: Towards conversational search and recommendation: system ask, user respond. In: CIKM. ACM (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Burga-Gutierrez, E., Vasquez-Chauca, B., Ugarte, W. (2021). Comparative Analysis of Question Answering Models for HRI Tasks with NAO in Spanish. In: Lossio-Ventura, J.A., Valverde-Rebaza, J.C., DÃaz, E., Alatrista-Salas, H. (eds) Information Management and Big Data. SIMBig 2020. Communications in Computer and Information Science, vol 1410. Springer, Cham. https://doi.org/10.1007/978-3-030-76228-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-76228-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-76227-8
Online ISBN: 978-3-030-76228-5
eBook Packages: Computer ScienceComputer Science (R0)