Skip to main content

Two-Class Fuzzy Clustering Ensemble Approach Based on a Constraint on Fuzzy Memberships

  • Conference paper
  • First Online:
Information Management and Big Data (SIMBig 2020)

Abstract

In recent years, the motivation to use the hybrid mixture of various methods has been increased. In this regard, the appropriate combination of supervised or unsupervised techniques have been proposed in order to enhances the performance of classification. In this paper, in order to obtain a stable fuzzy cluster scheme, a novel ensemble approach is presented. The proposed model consists of implementations of several Fuzzy C-means (FCM) based algorithms followed by the formation of a co-association matrix in relevant with the probability of each observation belonging to the clusters. The mean of these values is combined with a restriction criterion which have been designed to perceive the exact possibility of assigning observations to clusters. In other words, certain objects receive a reward, and uncertain objects with lower fuzzy coefficient degrees tend to be ineffective. Since partitioning clustering algorithms are commonly used as a consensus function, in this study, achieved row vector is given to K-means and FCM to generate final clusters. Several datasets have been used in order to evaluate the performance of the proposed model in comparison with different methods. Specially in internal validity indices, proposed method fulfills better results than traditional algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, W.: Some fundamental issues in ensemble methods. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 2243–2250 (2018)

    Google Scholar 

  2. Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73, 220–239 (2017)

    Article  Google Scholar 

  3. Bolón-Canedo, V., Alonso-Betanzos, A.: Recent Advances in Ensembles for Feature Selection, vol. 147. Springer, Heidelberg (2018)

    Book  Google Scholar 

  4. Boongoen, T., Iam-On, N.: Cluster ensembles: a survey of approaches with recent extensions and applications. Comput. Sci. Rev. 28, 1–25 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Sinha, A., Shen, Z., Song, Y., Ma, H., Eide, D., Hsu, B.J.P., Wang, K.: An overview of Microsoft academic service (mas) and applications. In: Proceedings of the 24th International Conference on World Wide Web, pp. 243–246 (2015)

    Google Scholar 

  6. Liang, W., Zhang, Y., Xu, J., Lin, D.: Optimization of basic clustering for ensemble clustering: an information-theoretic perspective. IEEE Access 7, 179048–179062 (2019)

    Article  Google Scholar 

  7. Ghaemi, R., Sulaiman, M.N., Ibrahim, H., Mustapha, N.: A survey: clustering ensembles techniques. World Acad. Sci. Eng. Technol. 5, 636–645 (2009)

    Google Scholar 

  8. Topchy, A., Jain, A.K., Punch, W.: Clustering ensembles: models of consensus and weak partitions. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1866–1881 (2005)

    Article  Google Scholar 

  9. Topchy, A., Jain, A.K., Punch, W.: Combining multiple weak clustering. In: Third IEEE International Conference on Data Mining, IEEE, pp. 331–338 (2003)

    Google Scholar 

  10. Alizadeh, H., Minaei-Bidgoli, B., Parvin, H.: Cluster ensemble selection based on a new cluster stability measure. Intell. Data Anal. 18, 389–408 (2014)

    Article  Google Scholar 

  11. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl. Discov. Data (TKDD) 1, 4 (2007)

    Google Scholar 

  12. Gan, Y., Li, N., Zou, G., Xin, Y., Guan, J.: Identification of cancer subtypes from single-cell RNA-seq data using a consensus clustering method. BMC Med. Genomics 11, 117 (2018)

    Article  Google Scholar 

  13. Agrawal, U., et al.: Combining clustering and classification ensembles: a novel pipeline to identify breast cancer profiles. Artif. Intell. Med. 97, 27–37 (2019)

    Article  Google Scholar 

  14. Bedalli, E., Mançellari, E., Asilkan, O.: A heterogeneous cluster ensemble model for improving the stability of fuzzy cluster analysis. Procedia Comput. Sci. 102, 129–136 (2016)

    Article  Google Scholar 

  15. Hadjitodorov, S.T., Kuncheva, L.I., Todorova, L.P.: Moderate diversity for better cluster ensembles. Inform. Fusion 7, 264–275 (2016)

    Article  Google Scholar 

  16. Ye, M., Liu, W., Wei, J., Hu, X.: Fuzzy c -means and cluster ensemble with random projection for big data clustering. Math. Prob. Eng. 1–13 (2016)

    Google Scholar 

  17. Popescu, M., Keller, K.M., Bezdek, J.C., Zare, A.: Random projections fuzzy c-means (RPFCM) for big data clustering. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6 (2015)

    Google Scholar 

  18. Wu, X., Ma, T., Cao, J., Tian, Y., Alabdulkarim, A.: A comparative study of clustering ensemble algorithms. Comput. Electr. Eng. 68, 603–615 (2018)

    Article  Google Scholar 

  19. Moazzen, Y., Yalcin, B., Taşdemir, K.: Sampling based approximate spectral clustering ensemble for unsupervised land cover identification. In: 2015 IEEE International Geoscience and Remote Sensing Symposium, pp. 2405–2408 (2015)

    Google Scholar 

  20. Strehl, A., Ghosh, J.: Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Vega-Pons, S., Ruiz-Shulcloper, J.: A survey of clustering ensemble algorithms. Int. J. Pattern Recognit. Artif. Intell. 25, 337–372 (2011)

    Article  MathSciNet  Google Scholar 

  22. Dudoit, S., Fridlyand, J.: Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19, 1090–1099 (2003)

    Article  Google Scholar 

  23. Fred, A.L., Jain, A.K.: Combining multiple clusterings using evidence accumulation. IEEE Trans. Pattern Anal. Mach. Intell. 27, 835–850 (2005)

    Article  Google Scholar 

  24. Li, C.S., Wang, Y., Yang, H.: Combining fuzzy partitions using fuzzy majority vote and KNN. J. Comput. 5, 791–798 (2010)

    Google Scholar 

  25. Khedairia, S., Khadir, M.T.: A multiple clustering combination approach based on iterative voting process. J. King Saud Univ.-Comput. Inform, Sci (2019)

    Book  Google Scholar 

  26. Berikov, V.B.: A probabilistic model of fuzzy clustering ensemble. Pattern Recognit. Image Anal. 28, 1–10 (2018)

    Article  Google Scholar 

  27. Mojarad, M., Nejatian, S., Parvin, H., Mohammadpoor, M.: A fuzzy clustering ensemble based on cluster clustering and iterative fusion of base clusters. Appl. Intell. 49, 2567–2581 (2019)

    Article  Google Scholar 

  28. Son, L.H., Van Hai, P.: A novel multiple fuzzy clustering method based on internal clustering validation measures with gradient descent. Int. J. Fuzzy Syst. 18(5), 894–903 (2016)

    Article  MathSciNet  Google Scholar 

  29. Avogadri, R., Valentini, G.: Fuzzy ensemble clustering based on random projections for DNA microarray data analysis. Artif. Intell. Med. 45, 173–183 (2009)

    Article  Google Scholar 

  30. Zhong, C., Yue, X., Zhang, Z., Lei, J.: A clustering ensemble: two-level-refined co-association matrix with path-based transformation. Pattern Recogn. 48(8), 2699–2709 (2015)

    Article  MATH  Google Scholar 

  31. Punera, K., Ghosh, J.: Consensus-based ensembles of soft clusterings. Appl. Artif. Intell. 22, 780–810 (2008)

    Article  Google Scholar 

  32. Yang, L., Lv, H., Wang, W.: Soft cluster ensemble based on fuzzy similarity measure. Proc. Multiconf. Comput. Eng. Syst. Appl. 2, 1994–1997 (2006)

    Google Scholar 

  33. MacQueen, K.: Some methods for classification and analysis of multivariate observations. Proc. Fifth Berkeley Symp. Math. Stat. Probab. 1(14), 281–297 (1967)

    Google Scholar 

  34. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function, vol. 2981. Plenum Press, New York (1981)

    Book  MATH  Google Scholar 

  35. Zhu, L., Chung, F.L., Wang, S.: Generalized fuzzy c-means clustering algorithm with improved fuzzy partitions. IEEE Trans. Syst. Man. Cybern. Part B (Cybernetics) 39(3), 578–591 (2009)

    Google Scholar 

  36. Fan, J.L., Zhen, W.Z., Xie, W.X.: Suppressed fuzzy c-means clustering algorithm. Pattern Recogn. Lett. 24(9–10), 1607–1612 (2003)

    Article  MATH  Google Scholar 

  37. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell. Inform. Syst. 17(2–3), 107–145 (2001)

    Article  MATH  Google Scholar 

  38. Kovács, F., Legány, C., Babos, A.: Cluster validity measurement techniques. In: 6th International Symposium of Hungarian Researchers on Computational Intelligence, p. 35 (2005)

    Google Scholar 

  39. Parikh, R., Mathai, A., Parikh, S., Sekhar, G.C., Thomas, R.: Understanding and using sensitivity, specificity and predictive values. Indian J. Ophthalmol. 56, 45 (2008)

    Article  Google Scholar 

  40. Davis, J., Goadrich, M.: The relationship between Precision-Recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, ACM, pp. 233–240 (2006)

    Google Scholar 

  41. Dua, D., Graff, C.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2019). http://archive.ics.uci.edu/ml

  42. Jain, A.K., Law, M.H.: Data clustering: a user’s dilemma. In: International Conference on Pattern Recognition and Machine Intelligence, pp. 1–10. Springer (2015)

    Google Scholar 

  43. Moody, G., Goldberger, A., McClennen, S., Swiryn, S.: Predicting the onset of paroxysmal atrial fibrillation: the Computers in Cardiology Challenge 2001. In Computers in Cardiology 2001, IEEE, 28 (Cat. No. 01CH37287), pp. 113–116 (2001). http://physionet.org/physiobank/database/afpdb

  44. Hilavin, I.: Development of a System to Diagnose Paroxysmal Atrial Fibrillation Patients from Arrhythmia Free ECG Records. Ph.D. dissertation, Dokuz Eylul University (2016)

    Google Scholar 

  45. Bezdek, J.C.: Cluster validity with fuzzy sets (1973)

    Google Scholar 

  46. Dave, R.N.: Validating fuzzy partitions obtained through c-shells clustering. Pattern Recogn. Lett. 17(6), 613–623 (1996)

    Article  MathSciNet  Google Scholar 

  47. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 8, 841–847 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aligholipour, O., Kuntalp, M. (2021). Two-Class Fuzzy Clustering Ensemble Approach Based on a Constraint on Fuzzy Memberships. In: Lossio-Ventura, J.A., Valverde-Rebaza, J.C., Díaz, E., Alatrista-Salas, H. (eds) Information Management and Big Data. SIMBig 2020. Communications in Computer and Information Science, vol 1410. Springer, Cham. https://doi.org/10.1007/978-3-030-76228-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76228-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76227-8

  • Online ISBN: 978-3-030-76228-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics