Skip to main content

Comparative Study of Spatial Prediction Models for Estimating PM\(_{2.5}\) Concentration Level in Urban Areas

  • Conference paper
  • First Online:
Information Management and Big Data (SIMBig 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1410))

Included in the following conference series:

Abstract

Having accurate spatial prediction models of air pollutant concentrations can be very helpful to alleviate the shortage of monitoring stations, specially in low-to-middle income countries. However, given the large diversity of model types, both statistical, numerical and machine learning (ML) based, it is not clear which of them are most suitable for this task. In this paper we study the predictive capabilities of common machine learning methods for the spatial prediction of PM\(_{2.5}\) concentration level. Three relevant factors were scrutinized: the extent to which meteorological variables impact the prediction performance; the effect of variable normalization by inverse distance weighting (IDW); and the number of neighborhood stations needed to maximize predictive performance. Results in a dataset from Beijing monitoring network show that simple models like Linear Regresors trained on IDW normalized variables can cope with this task. Some knowledge have been derived to guide the construction of competent models for spatial prediction of PM\(_{2.5}\) concentrations with ML-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Lag is expressed in units of time (ex: hours) and corresponds to the amount of historical data that we allow the model to be used for prediction.

  2. 2.

    http://aqicn.org/map/china/.

  3. 3.

    http://aqicn.org/map/peru/.

  4. 4.

    https://biendata.com/competition/kdd_2018/.

  5. 5.

    Statistic that determines the quality of the model to replicate the results, and the proportion of variation of the results that can be explained by the model [14].

References

  1. Baumann, L.M., et al.: Effects of distance from a heavily transited avenue on asthma and atopy in a periurban shantytown in Lima, Peru. J. Aller. Clin. Immunol. 127(4), 875–882 (2011)

    Article  Google Scholar 

  2. Bellinger, C., Jabbar, M.S.M., Zaïane, O., Osornio-Vargas, A.: A systematic review of data mining and machine learning for air pollution epidemiology. BMC Public Health 17(1), 907 (2017)

    Article  Google Scholar 

  3. Liu, B.C., Binaykia, A., Chang, P.C., Tiwari, M.K., Tsao, C.C.: Urban air quality forecasting based on multi-dimensional collaborative support vector regression (SVR): a case study of Beijing-Tianjin-Shijiazhuang. PloS One 12(7), 1–17 (2017)

    Google Scholar 

  4. Li, X., et al.: Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation. Environ. Pollut. 231, 997–1004 (2017)

    Article  Google Scholar 

  5. Xu, Y., Yang, W., Wang, J.: Air quality early-warning system for cities in China. Atmos. Environ. 148, 239–257 (2017)

    Article  Google Scholar 

  6. Freeman, B.S., Taylor, G., Gharabaghi, B., Thé, J.: Forecasting air quality time series using deep learning. J. Air Waste Manage. Assoc. 68, 1–21 (2018). 1982, p. 301

    Article  Google Scholar 

  7. Reátegui-Romero, W., Sánchez-Ccoyllo, O.R., de Fatima Andrade, M., Moya-Alvarez, A.: PM2.5 Estimation with the WRF/Chem model, produced by vehicular flow in the Lima metropolitan area. Open J. Air Pollut. 7(03), 215 (2018)

    Article  Google Scholar 

  8. Sánchez-Ccoyllo, O.R., et al.: Modeling study of the particulate matter in Lima with the WRF-Chem model: case study of April 2016. Int. J. Appl. Eng. Res. 13(11), 10129–10141 (2018)

    Article  Google Scholar 

  9. Soh, P.W., Chang, J.W., Huang, J.W.: Adaptive deep learning-based air quality prediction model using the most relevant spatial-temporal relations. IEEE Access 6, 38186–38199 (2018)

    Article  Google Scholar 

  10. Wang, J., Song, G.: A deep spatial-temporal ensemble model for air quality prediction. Neurocomputing 314, 198–206 (2018)

    Article  Google Scholar 

  11. Wen, C., Liu, S., Yao, X., Peng, L., Li, X., Hu, Y., Chi, T.: A novel spatiotemporal convolutional long short-term neural network for air pollution prediction. Sci. Total Environ. 654, 1091–1099 (2019)

    Article  Google Scholar 

  12. Rakthanmanon, T., et al.: Searching and mining trillions of time series subsequences under dynamic time warping. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 262–270. ACM, August, 2012

    Google Scholar 

  13. Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7(3), 358–386 (2004). https://doi.org/10.1007/s10115-004-0154-9

    Article  Google Scholar 

  14. Steel, R.G., Torrie, J.H.: Principles and Procedures of Statistics. McGraw-Hill Book Company Inc., New York (1960)

    MATH  Google Scholar 

  15. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM International Conference, pp. 517–524. ACM, January 1968

    Google Scholar 

  16. OMS. Nueve de cada diez personas de todo el mundo respiran aire contaminado. Recuperado de (2018). https://www.who.int/es/news-room/detail/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action

  17. Unidas, N.: La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe (LC/G.2681-P/Rev. 3), Santiago (2018)

    Google Scholar 

  18. Xing, Y.F., Xu, Y.H., Shi, M.H., Lian, Y.X.: The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 8(1), 69 (2016)

    Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge financial support by Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica (Fondecyt) - Mundial Bank (Grant: 50-2018-FONDECYT-BM-IADT-MU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irvin Rosendo Vargas-Campos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vargas-Campos, I.R., Villanueva, E. (2021). Comparative Study of Spatial Prediction Models for Estimating PM\(_{2.5}\) Concentration Level in Urban Areas. In: Lossio-Ventura, J.A., Valverde-Rebaza, J.C., Díaz, E., Alatrista-Salas, H. (eds) Information Management and Big Data. SIMBig 2020. Communications in Computer and Information Science, vol 1410. Springer, Cham. https://doi.org/10.1007/978-3-030-76228-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76228-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76227-8

  • Online ISBN: 978-3-030-76228-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics