Abstract
Data storage has been a problem as technology advances, there are more devices capable of capturing images, sounds, videos, etc. On the security side, many people choose to use security cameras that are available 24 h a day to capture anomalous events and maintain the security of the area, however, storing all captured videos generates high costs, as well as the prolonged analysis that this type of videos implies. For this reason, we propose a method that allows selecting only the important events captured by a video surveillance camera and then classifying them among the types of most constant criminal acts in Peru.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Seagate - https://bit.ly/31wPnfn.
- 2.
Magazine “Lima como Vamos” - https://bit.ly/394n6i3.
- 3.
INEI - https://www.inei.gob.pe/.
- 4.
- 5.
“Lima como Vamos” - https://bit.ly/2BAdj78.
- 6.
INEI - https://bit.ly/39F7FgD.
References
Bansod, S.D., Nandedkar, A.V.: Transfer learning for video anomaly detection. J. Intell. Fuzzy Syst. 36, 1967–1975 (2019)
Boslaugh, S., Watters, P.A.: Statistics in a Nutshell. O’Reilly, Farnham (2008)
Chen, X., Xu, X., Yang, Y., Wu, H., Tang, J., Zhao, J.: Augmented ship tracking under occlusion conditions from maritime surveillance videos. IEEE Access 8, 42884–42897 (2020)
Chen, Z., Li, W., Fei, C., Liu, B., Yu, N.: Robust anomaly detection via fusion of appearance and motion features. In: VCIP (2018)
Cheng, Y., et al.: An anomaly comprehension neural network for surveillance videos on terminal devices. In: DATE (2020)
dos Santos Belo, L., Caetano Jr., C.A., Gonçalves do Patrocínio Jr., Z.K., Ferzoli Guimarães, S.J.: Summarizing video sequence using a graph-based hierarchical approach. Neurocomputing. 173, 1001–1016 (2016)
Fontes de Avila, S.E., Brandão Lopes, A.P., da Luz Jr., A., de Albuquerque Araújo, A.: VSUMM: a mechanism designed to produce static video summaries and a novel evaluation method. Pattern Recognit. Lett. 32, 56–68 (2011)
Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptive Computation and Machine Learning, MIT Press, Cambridge (2016)
Nguyen, T., Meunier, J.: Anomaly detection in video sequence with appearance-motion correspondence. In: ICCV (2019)
Panda, R., Das, A., Wu, Z., Ernst, J., Roy-Chowdhury, A.K.: Weakly supervised summarization of web videos. In: ICCV (2017)
Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: MobileNetV2: inverted residuals and linear bottlenecks. In: CVPR (2018)
Singh, K., Rajora, S., Vishwakarma, D.K., Tripathi, G., Kumar, S., Walia, G.S.: Crowd anomaly detection using aggregation of ensembles of fine-tuned convnets. Neurocomputing 371, 188–198 (2020)
Song, X., Sun, L., Lei, J., Tao, D., Yuan, G., Song, M.: Event-based large scale surveillance video summarization. Neurocomputing 187, 66–74 (2016)
Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance videos. In: CVPR (2018)
Truong, B.T., Venkatesh, S.: Video abstraction: a systematic review and classification. ACM Trans. Multimedia Comput. Commu. Appl. 3, 3 (2007)
Ugarte, W., Boizumault, P., Loudni, S., Crémilleux, B.: Soft threshold constraints for pattern mining. In: Ganascia, J.-G., Lenca, P., Petit, J.-M. (eds.) DS 2012. LNCS (LNAI), vol. 7569, pp. 313–327. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33492-4_25
Ugarte, W., Boizumault, P., Loudni, S., Crémilleux, B., Lepailleur, A.: Soft constraints for pattern mining. J. Intell. Inf. Syst. 44(2), 193–221 (2015). https://doi.org/10.1007/s10844-013-0281-4
Wang, X., Gao, L., Song, J., Shen, H.T.: Beyond frame-level CNN: saliency-aware 3-D CNN with LSTM for video action recognition. IEEE Signal Process. Lett. 24, 510–514 (2017)
Wu, J., Zhong, S., Jiang, J., Yang, Y.: A novel clustering method for static video summarization. Multimedia Tools Appl. 76, 9625–9641 (2017)
Xu, Z., Hu, J., Deng, W.: Recurrent convolutional neural network for video classification. In: ICME (2016)
Zhou, J.T., Du, J., Zhu, H., Peng, X., Liu, Y., Goh, R.S.M.: AnomalyNet: an anomaly detection network for video surveillance. IEEE Trans. Inf. Forensics Secur. 14, 2537–2550 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Chancolla-Neira, S.W., Salinas-Lozano, C.E., Ugarte, W. (2021). Static Summarization Using Pearson’s Coefficient and Transfer Learning for Anomaly Detection for Surveillance Videos. In: Lossio-Ventura, J.A., Valverde-Rebaza, J.C., Díaz, E., Alatrista-Salas, H. (eds) Information Management and Big Data. SIMBig 2020. Communications in Computer and Information Science, vol 1410. Springer, Cham. https://doi.org/10.1007/978-3-030-76228-5_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-76228-5_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-76227-8
Online ISBN: 978-3-030-76228-5
eBook Packages: Computer ScienceComputer Science (R0)