Skip to main content

Digital Twin and PHM for Optimizing Inventory Levels

  • Conference paper
  • First Online:
Production Research (ICPR-Americas 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1407))

Included in the following conference series:

  • 595 Accesses

Abstract

Intelligent manufacturing associated with the advent of industry 4.0 marks a new era associated with technological solutions. Physical and virtual systems (CPS) are employed to improve processes and operations in a highly competitive environment. In this context, digital twin (DT) and asset health prognosis and management (PHM) play a fundamental role in manufacturing, allowing, through monitoring and analysis by physical and virtual means, to maximize the use of assets with estimated remaining life (RUL) and minimize unscheduled interruptions. This article proposes an extension to this context addressing the optimization of the inventory of materials and spare parts, representing a significant value that is often immobilized without expected use, causing a financial impact on organizations. It’s evaluated in the literature the use of DT and PHM related to the control of spare parts and gaps found, and opportunities to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhu, Z., Liu, C., Xu, X.: Visualisation of the digital twin data in manufacturing by using augmented reality. Procedia CIRP 81, 898–903 (2019). https://doi.org/10.1016/j.procir.2019.03.223

    Article  Google Scholar 

  2. Tao, F., Sui, F., Liu, A., Qi, Q., Zhang, M., Song, B., et al.: Digital twin-driven product design framework. Int. J. Prod. Res. 25, 1–19 (2018). https://doi.org/10.1080/00207543.2018.1443229

    Article  Google Scholar 

  3. Qi, Q., Tao, F., Zuo, Y., Zhao, D.: Digital twin service towards smart manufacturing. Procedia CIRP 72, 237–242 (2018). https://doi.org/10.1016/j.procir.2018.03.103

    Article  Google Scholar 

  4. Schleich, B., Dittrich, M.-A., Clausmeyer, T., Damgrave, R., Erkoyuncu, J.A., Haefner, B., et al.: Shifting value stream patterns along the product lifecycle with digital twins. Procedia CIRP 86, 3–11 (2019). https://doi.org/10.1016/j.procir.2020.01.049

    Article  Google Scholar 

  5. Roy, R., Stark, R., Tracht, K., Takata, S., Mori, M.: Continuous maintenance and the future – foundations and technological challenges. CIRP Ann. 65(2), 667–688 (2016). https://doi.org/10.1016/j.cirp.2016.06.006

    Article  Google Scholar 

  6. Li, R., Verhagen, W.J.C., Curran, R.: Stakeholder-oriented systematic design methodology for prognostic and health management system: stakeholder expectation definition. Adv. Eng. Inform. 43, (2020). https://doi.org/10.1016/j.aei.2020.101041

    Article  Google Scholar 

  7. Lamoureux, B., Mechbal, N., Massé, J.-R.: A combined sensitivity analysis and kriging surrogate modeling for early validation of health indicators. Reliab. Eng. Syst. Saf. 130, 12–26 (2014). https://doi.org/10.1016/j.ress.2014.03.007

    Article  Google Scholar 

  8. Werner, A., Zimmermann, N., Lentes, J.: Approach for a holistic predictive maintenance strategy by incorporating a digital twin. Procedia Manuf. 39, 1743–1751 (2019). https://doi.org/10.1016/j.promfg.2020.01.265

    Article  Google Scholar 

  9. Rajesh, P.K., Manikandan, N., Ramshankar, C.S., Vishwanathan, T., Sathishkumar, C.: Digital twin of an automotive brake pad for predictive maintenance. Procedia Comput. Sci. 165, 18–24 (2019). https://doi.org/10.1016/j.procs.2020.01.061

    Article  Google Scholar 

  10. Raman, V., Hassanaly, M.: Emerging trends in numerical simulations of combustion systems. Proc. Combust. Inst. 37, 2073–2089 (2018). https://doi.org/10.1016/j.proci.2018.07.121

    Article  Google Scholar 

  11. Bao, J., Guo, D., Li, J., Zhang, J.: The modelling and operations for the digital twin in the context of manufacturing. Enterp. Inf. Syst. 21;13(4), 534–556 (2019). https://doi.org/10.1080/17517575.2018.1526324

  12. Qiao, Q., Wang, J., Ye, L., Gao, R.X.: Digital twin for machining tool condition prediction. Procedia CIRP 81, 1388–1393 (2019). https://doi.org/10.1016/j.procir.2019.04.049

    Article  Google Scholar 

  13. Melesse, T.Y., Pasquale, V.D., Riemma, S.: Digital twin models in industrial operations: a systematic literature review. Procedia Manuf. 42, 267–272 (2020). https://doi.org/10.1016/j.promfg.2020.02.084

    Article  Google Scholar 

  14. Misrudin, F., Foong, L.C.: Digitalization in semiconductor manufacturing- simulation forecaster approach in managing manufacturing line performance. Procedia Manuf. 38, 1330–1337 (2019). https://doi.org/10.1016/j.promfg.2020.01.156

    Article  Google Scholar 

  15. Luo, W., Hu, T., Ye, Y., Zhang, C., Wei, Y.: A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin. Robot. Comput. Integr. Manuf. 65, (2020). https://doi.org/10.1016/j.rcim.2020.101974

    Article  Google Scholar 

  16. Booyse, W., Wilke, D.N., Heyns, S.: Deep digital twins for detection, diagnostics and prog-nostics. Mech. Syst. Signal Process. 140, (2020). https://doi.org/10.1016/j.ymssp.2019.106612

    Article  Google Scholar 

  17. Short, M., Twiddle, J.: An industrial digitalization platform for condition monitoring and predictive maintenance of pumping equipment. Sens. Basel 31;19(17) (2019). https://doi.org/10.3390/s19173781

  18. Aivaliotis, P., Georgoulias, K., Arkouli, Z., Makris, S.: Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance. Procedia CIRP 81, 417–422 (2019). https://doi.org/10.1016/j.procir.2019.03.072

    Article  Google Scholar 

  19. Nuñez, D.L., Borsato, M.: An ontology-based model for prognostics and health management of machines. J. Ind. Inf. Integr. 6, 33–46 (2017). https://doi.org/10.1016/j.jii.2017.02.006

    Article  Google Scholar 

  20. Bagheri, B., Yang, S., Kao, H.-A., Lee, J.: Cyber-physical systems architecture for self-aware machines in industry 4.0 environment. IFAC-PapersOnLine 48(3), 1622–1627 (2015). https://doi.org/10.1016/j.ifacol.2015.06.318

    Article  Google Scholar 

  21. Sénéchal, O., Trentesaux, D.: A framework to help decision makers to be environmentally aware during the maintenance of cyber physical systems. Environ. Impact Assess. Rev. 77, 11–22 (2019). https://doi.org/10.1016/j.eiar.2019.02.007

    Article  Google Scholar 

  22. Weiss, B.A., Sharp, M., Klinger, A.: Developing a hierarchical decomposition methodology to increase manufacturing process and equipment health awareness. J. Manuf. Syst. 48, 96–107 (2018). https://doi.org/10.1016/j.jmsy.2018.03.002

    Article  Google Scholar 

  23. Einabadi, B., Baboli, A., Ebrahimi, M.: Dynamic predictive maintenance in industry 4.0 based on real time information: case study in automotive industries. IFAC-PapersOnLine 52(13), 1069–1074 (2019). https://doi.org/10.1016/j.ifacol.2019.11.337

    Article  Google Scholar 

  24. Traini, E., Bruno, G., D’Antonio, G., Lombardi, F.: Machine learning framework for predictive maintenance in milling. IFAC Papers OnLine 52(13), 177–182 (2019). https://doi.org/10.1016/j.ifacol.2019.11.172

    Article  Google Scholar 

  25. Ardila, A., Martinez, F., Garces, K., Barbieri, G., Sanchez-Londono, D., Caielli, A., et al.: XRepo - towards an information system for prognostics and health management analysis. Procedia Manuf. 42, 146–153 (2020). https://doi.org/10.1016/j.promfg.2020.02.044

    Article  Google Scholar 

  26. Susto, G.A., Schirru, A., Pampuri, S., Beghi, A., De Nicolao, G.: A hidden-Gamma model-based filtering and prediction approach for monotonic health factors in manufacturing. Control Eng. Pract. 74, 84–94 (2018). https://doi.org/10.1016/j.conengprac.2018.02.011

    Article  Google Scholar 

  27. Ruiz-Sarmiento, J.-R., Monroy, J., Moreno, F.-A., Galindo, C., Bonelo, J.-M., Gonzalez-Jimenez, J.: A predictive model for the maintenance of industrial machinery in the context of industry 4.0. Eng. Appl. Artif. Intell. 87, (2020). https://doi.org/10.1016/j.engappai.2019.103289

    Article  Google Scholar 

  28. Kumar, A., Shankar, R., Thakur, L.S.: A big data driven sustainable manufacturing framework for condition-based maintenance prediction. J. Comput. Sci. 27, 428–439 (2017). https://doi.org/10.1016/j.jocs.2017.06.006

    Article  Google Scholar 

  29. Cattaneo, L., Macchi, M.: A digital twin proof of concept to support machine prognostics with low availability of run-to-failure data. IFAC-PapersOnLine 52(10), 37–42 (2019). https://doi.org/10.1016/j.ifacol.2019.10.016

    Article  Google Scholar 

  30. Tao, F., Zhang, M., Liu, Y., Nee, A.Y.C.: Digital twin driven prognostics and health management for complex equipment. CIRP Ann. 67(1), 169–172 (2018). https://doi.org/10.1016/j.cirp.2018.04.055

    Article  Google Scholar 

  31. Liu, Y., Wang, T., Zhang, H., Cheutet, V., Shen, G.: The design and simulation of an autonomous system for aircraft maintenance scheduling. Comput. Ind. Eng. 137, (2019). https://doi.org/10.1016/j.cie.2019.106041

    Article  Google Scholar 

  32. Kraft, J., Kuntzagk, S.: Engine fleet-management: the use of digital twins from a MRO perspective. Volume 1: aircraft engine; fans and blowers; marine; honors and awards. ASME. V001T01A007 (2017). https://doi.org/10.1115/gt2017-63336

  33. Liu, Z., Meyendorf, N., Mrad, N.: The role of data fusion in predictive maintenance using digital twin. In: AIP Conference Proceedings, vol. 1949, p. 020023 (2018). https://doi.org/10.1063/1.5031520

  34. Zio, E., Fan, M., Zeng, Z., Kang, R.: Application of reliability technologies in civil aviation: lessons learnt and perspectives. Chin. J. Aeronaut. 32(1), 143–158 (2018). https://doi.org/10.1016/j.cja.2018.05.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaves, J., Loures, E.F.R., Santos, E.A.P., Silva, J.C., Kondo, R. (2021). Digital Twin and PHM for Optimizing Inventory Levels. In: Rossit, D.A., Tohmé, F., Mejía Delgadillo, G. (eds) Production Research. ICPR-Americas 2020. Communications in Computer and Information Science, vol 1407. Springer, Cham. https://doi.org/10.1007/978-3-030-76307-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76307-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76306-0

  • Online ISBN: 978-3-030-76307-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics