Abstract
The automatic classification of the galaxies in our universe is one of the major challenges astronomers faces. Today, advances in computer vision and artificial neural network techniques can be used to tackle this problem. The main contribution of the paper aims to (i) discuss the different classification algorithms of galaxies, which is a step required for the subsequent scientific analyses, (ii) present the classifiers of machine learning (ML) that can be used in conjunction with conventional methods that use explicit modeling, and (iii) summarize the latest computer vision efforts, especially neural networks (NNs) and their variants which classify galaxy images automatically. Multilayer perceptron (MLP) classifier outperforms all others in all scenarios performance accuracy achieved 99.5278%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sharma, P., Baral, A.: Galaxy classification using neural networks: a review. In: 2018 International Conference on Audio, Language and Image Processing (ICALIP), pp. 179–183, IEEE (2018)
Lekshmi, S., Revathy, K., Nayar, S.R.P.: Galaxy classification using fractal signature. Astron. Astrophys. 405(3), 1163–1167 (2003)
De La Calleja, J., Fuentes, O.: Machine learning and image analysis for morphological galaxy classification. Mon. Not. R. Astron. Soc. 349(1), 87–93 (2004)
Shamir, L.: Automatic morphological classification of galaxy images. Mon. Not. R. Astron. Soc. 399(3), 1367–1372 (2009)
Banerji, M., Lahav, O., Lintott, C.J., Abdalla, F.B., Schawinski, K., Bamford, S.P., Andreescu, D., Murray, P., Raddick, M.J., Slosar, A., Szalay, A.: Galaxy Zoo: reproducing galaxy morphologies via machine learning. Mon. Not. R. Astron. Soc. 406(1), 342–353 (2010)
State, L., Constantin, D., Sararu, C.: PCA Approach on morphological classification of galaxies. In: 2009 16th International Conference on Systems, Signals and Image Processing, pp. 1–4, IEEE (2009)
Ata, M.M., Mohamed, M.A., El-Minir, H.K., Abd-El-Fatah, A.I.: Automated classification techniques of galaxies using artificial neural networks based classifiers. In: 2009 International Conference on Computer Engineering & Systems, pp. 157–161, IEEE (2009)
Gauci, A., Adami, K.Z., Abela, J.: Machine learning for galaxy morphology classification. arXiv preprint arXiv:1005.0390 (2010)
Marin, M.A., Sucar, L.E., Gonzalez, J.A., Diaz, R.: A hierarchical model for morphological galaxy classification. In: Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference, pp. 438–443 (2013)
Abd Elfattah, M., El-Bendary, N., Elsoud, M.A.A., Hassanien, A.E., Tolba, M.F.: An intelligent approach for galaxies images classification. In: 13th International Conference on Hybrid Intelligent Systems (HIS 2013), pp. 167–172, IEEE (2013)
Abd Elfattah, M., Elbendary, N., Elminir, H.K., Abd El-Soud, M.A., Hassanien, A.E.: Galaxies image classification using empirical mode decomposition and machine learning techniques. In: 2014 International Conference on Engineering and Technology (ICET), pp. 1–5, IEEE (2014)
Dieleman, S., Willett, K.W., Dambre, J.: Rotation-invariant convolutional neural networks for galaxy morphology prediction. Mon. Not. R. Astron. Soc. 450(2), 1441–1459 (2015)
Selim, I., Keshk, A.E., El Shourbugy, B.M.: Galaxy image classification using non-negative matrix factorization. Int. J. Comput. Appl.s 137(5), 4–8 (2016)
Aniyan, A.K., Thorat, K.: Classifying radio galaxies with the convolutional neural network. Astrophys. J. Suppl. Ser. 230(2), 20 (2017)
Khalifa, N.E.M., Taha, M.H.N., Hassanien, A.E., Selim, I.M.: Deep galaxy: Classification of galaxies based on deep convolutional neural networks. arXiv preprint arXiv:1709.02245 (2017)
Selim, I.M., Abd El Aziz, M.: Automated morphological classification of galaxies based on projection gradient nonnegative matrix factorization algorithm. Exp. Astron. 43(2), 131–144 (2017)
Khalifa, N., Taha, M.H., Hassanien, A., Selim, I.: Deep galaxy V2: robust deep convolutional neural networks for galaxy morphology classifications. In: 2018 International Conference on Computing Sciences and Engineering (ICCSE), pp. 1–6, IEEE (2018)
Abd Elaziz, M., Hosny, K.M., Selim, I.M.: Galaxies image classification using artificial bee colony based on orthogonal gegenbauer moments. Soft Comput. 23(19), 9573–9583 (2019)
Zhu, X., Dai, J., Bian, C., Chen, Y., Chen, S., Hu, C.: Galaxy morphology classification with deep convolutional neural networks. Astrophys. Space Sci. 364(4), 55 (2019)
Yasser, I., Twakol, A., Abd El-Khalek, A.A., Samrah, A., Salama, A.A.: COVID-X: novel health-fog framework based on neutrosophic classifier for confrontation Covid-19. Neutrosophic Sets Syst. 35, 1–21 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
El-Khalek, A.A.A., Khalil, A.T., El-Soud, M.A.A., Yasser, I. (2021). Classification of Galaxy Images Using Computer Vision and Artificial Neural Network Techniques: A Survey. In: Hassanien, A.E., et al. Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2021). AICV 2021. Advances in Intelligent Systems and Computing, vol 1377. Springer, Cham. https://doi.org/10.1007/978-3-030-76346-6_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-76346-6_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-76345-9
Online ISBN: 978-3-030-76346-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)