
HAL Id: hal-02948735
https://inria.hal.science/hal-02948735

Submitted on 25 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance Diagnosis in Cloud Microservices using
Deep Learning

Li Wu, Jasmin Bogatinovski, Sasho Nedelkoski, Johan Tordsson, Odej Kao

To cite this version:
Li Wu, Jasmin Bogatinovski, Sasho Nedelkoski, Johan Tordsson, Odej Kao. Performance Diagnosis
in Cloud Microservices using Deep Learning. AIOPS 2020 - International Workshop on Artificial
Intelligence for IT Operations, Dec 2020, Dubai, United Arab Emirates. �hal-02948735�

https://inria.hal.science/hal-02948735
https://hal.archives-ouvertes.fr


Performance Diagnosis in Cloud Microservices
using Deep Learning

Li Wu1,2, Jasmin Bogatinovski2, Sasho Nedelkoski2, Johan Tordsson1,3, and
Odej Kao2

1 Elastisys AB, Ume̊a, Sweden
2 Distributed and Operating Systems Group, TU Berlin, Berlin, Germany

3 Department of Computing Science, Ume̊a University, Ume̊a, Sweden
{li.wu, johan.tordsson}@elastisys.com

{jasmin.bogatinovski, nedelkoski, odej.kao}@tu-berlin.de

Abstract. Microservice architectures are increasingly adopted to design
large-scale applications. However, the highly distributed nature and com-
plex dependencies of microservices complicate automatic performance
diagnosis and make it challenging to guarantee service level agreements
(SLAs). In particular, identifying the culprits of a microservice perfor-
mance issue is extremely difficult as the set of potential root causes is
large and issues can manifest themselves in complex ways. This paper
presents an application-agnostic system to locate the culprits for mi-
croservice performance degradation with fine granularity, including not
only the anomalous service from which the performance issue originates
but also the culprit metrics that correlate to the service abnormality. Our
method first finds potential culprit services by constructing a service de-
pendency graph and next applies an autoencoder to identify abnormal
service metrics based on a ranked list of reconstruction errors. Our ex-
perimental evaluation based on injection of performance anomalies to a
microservice benchmark deployed in the cloud shows that our system
achieves a good diagnosis result, with 92% precision in locating culprit
service and 85.5% precision in locating culprit metrics.

Keywords: Performance diagnosis · root cause analysis · microservices
· cloud computing · autoencoder .

1 Introduction

The microservice architecture design paradigm is becoming a popular choice to
design modern large-scale applications [3]. Its main benefits include accelerated
development and deployment, simplified fault debugging and recovery, and pro-
ducing a rich software development technique stacks. With microservices, mono-
lithic application can be decomposed into (up to hundreds of) single-concerned,
loosely-coupled services that can be developed and deployed independently [12].

As microservices deployed on cloud platforms are highly-distributed across
multiple hosts and dependent on inter-communicating services, they are prone
to performance anomalies due to the external or internal issues. Outside factors



include resource contention and hardware failure or other problems e.g., software
bugs. To guarantee the promised service level agreements (SLAs), it is crucial
to timely pinpoint the root cause of performance problems. Further, to make
appropriate decisions, the diagnosis can provide some insights to the operators
such as where the bottleneck is located, and suggest mitigation actions. However,
it is considerably challenging to conduct performance diagnosis in microservices
due to the large scale and complexity of microservices and the wide range of
potential causes.

Microservices running in the cloud have monitoring capabilities that capture
various application-specific and system-level metrics, and can thus understand
the current system state and be used to detect service level objective (SLO)
violations. These monitored metrics are externalization of the internal state of
the system. Metrics can be used to infer the failure in the system and we thus
refer to them as symptoms in anomaly scenarios. However, because of the large
number of metrics exposed by microservices (e.g., Uber reports 500 million met-
rics exposed [14]) and that faults tend to propagate among microservices, many
metrics can be detected as anomalous, in addition to the true root cause. These
additional anomalous metrics make it difficult to diagnose performance issues
manually (research problems are stated in Section 2).

To automate performance diagnosis in microservices effectively and efficiently,
different approaches have been developed (briefly discussed in Section 6). How-
ever, they are limited by either coarse granularity or considerable overhead.
Regarding granularity, some work focus on locating the service that initiates the
performance degradation instead of identifying the real cause with fine granu-
larity [8, 15, 9] (e.g., resource bottleneck or a configuration mistake). We argue
that the coarse-grained fault location is insufficient as it cannot give us more
details to the root causes, which makes it difficult to recover the system timely.
As for considerable overhead, to narrow down the fault location, several systems
can pinpoint the root causes with fine granularity. But they need to instrument
application source code or runtime systems, which brings considerable overhead
to a production system and/or slows down development [4].

In this paper, we adopt a two-stage approach for anomaly detection and root
cause analysis (system overview is described in Section 3). In the first stage, we
model the service that causes the failure following a graph-based approach [16].
This allows us to pinpoint the potential faulty service that initiates the perfor-
mance degradation, by identifying the root cause (anomalous metric) that con-
tributes to the performance degradation of the faulty service. The second stage,
inference of the potential failure, is based on the assumption that the most im-
portant symptoms for the faulty behaviour have a significant deviation from their
values during normal operation. Measuring the individual contribution to each of
the symptoms at any time point, that leads to the discrepancy between observed
and normal behaviour, allows for localization of the most likely symptoms that
reflect the fault. Given this assumption, we aim to model the symptoms values
under normal system behaviour. To do this we adopt an autoencoder method
(Section 4). Assuming a Gaussian distribution of the reconstruction error from



the autoencoder, we can suggest interesting variations in the data points. We
then decompose the reconstruction error assuming each of the symptoms as
equally important. Further domain and system knowledge can be adopted to
re-weight the error contribution. To deduce the set of possible symptoms as a
preference rule for the creation of the set of possible failure we consider the
symptom with a maximal contribution to the reconstruction error. We evalu-
ate our method in a microservice benchmark named Sock-shop4, running in a
Kubernetes cluster in Google Cloud Engine (GCE)5, by injecting two types of
performance issues (CPU hog and memory leak) into different microservices.
The results show that our system can identify the culprit services and metrics
well, with 92% and 85.5% in precision separately (Section 5).

2 Problem Description

Given a collection of loosely coupled microservices S, we collect the relevant
performance metrics over time for each service s ∈ S. We use m(s,t) to denote

the metrics for service s at time t. Furthermore, m
(s,t)
i denotes the individual

metric (e.g., response time, container cpu utilization, etc.) for service s, collected
at time t.

Based on above definition, the performance diagnosis problem is formulated
as follows: given metrics m of a cloud microservice, assuming anomalies are
detected from metric mi of a set of services sa at time t, where i is the in-
dex of response time, how can we identify the culprit metrics that cause the
anomaly? Furthermore, we break down the research problem as following two
sub-problems:

1. How to pinpoint the culprit service src that initiates the performance degra-
dation in microservices?;

2. Given the culprit service src, how to pinpoint the culprit metric mrc that
contributes to its abnormality?

3 System Overview

To address the culprit services and metrics diagnosis problems, we propose a per-
formance diagnosis system shown in Fig. 1. In overall, there are four components
in our system, namely data collection, anomaly detection, culprit service local-
ization (CSL) and culprit metric localization (CML). Firstly, we collect metrics
from multiple data resources in the microservices, including run-time operating
system, the application and the network. In particular, we continuously mon-
itor the response times between all pairs of communicating services. Once the
anomaly detection module identifies long response times from services, it trig-
gers the system to localize the culprit service that the anomaly originates from.

4Sock-shop - https://microservices-demo.github.io/
5Google Cloud Engine - https://cloud.google.com/compute/



After the culprit service localization, it returns a list of potential culprit ser-
vices, sorted by probability of being the source of the anomaly. Next, for each
potential culprit service, our method identifies the anomalous metrics which con-
tribute to the service abnormality. Finally, it outputs a list of (service, metrics
list) pairs, for the possible culprit service, and metrics, respectively. With the
help of this list, cloud operators can narrow down the causes and reduce the
time and complexity to get the real cause.

3.1 Data Collection

We collect data from multiple data sources, including the application, the oper-
ating system and the network, in order to provide culprits for performance issues
caused by diverse root causes, such as software bugs, hardware issues, resource
contention, etc. Our system is designed to be application-agnostic, requiring no
instrumentation to the application to get the data. Instead, we collect the metrics
that reported by the application and the run-time system themselves.

3.2 Anomaly Detection

In the system, we detect the performance anomaly on the response times be-
tween two interactive services (collected by service mesh) using a unsupervised
learning method: BIRCH clustering [6]. When a response time deviates from
their normal status, it is detected as an anomaly and trigger the subsequent
performance diagnosis procedures. Note that, due to the complex dependency
among services and the properties of fault propagation, multiple anomalies could
be also detected from services that have no issue.

3.3 Culprit Service Localization (CSL)

After anomalies are detected, the culprit service localization is triggered to iden-
tify the faulty service that initiates the anomalies. To get the faulty services,
we use the method proposed by Wu, L., et al. [16]. First, it constructs an at-
tributed graph to capture the anomaly propagation among services through not
only the service call paths but also the co-located machines. Next, it extracts
an anomalous subgraph based on detected anomalous services to narrow down
the root cause analysis scope from the large number of microservices. Finally, it
ranks the faulty services based on the personalized PageRank, where it correlates
the anomalous symptoms in response times with relevant resource utilization in
container and system levels to calculate the transition probability matrix and
Personalized PageRank vector. There are two parameters for this method that
need tuning: the anomaly detection threshold and the detection confidence. For
the detail of the method, please refer to [16].

With the identified faulty services, we further identify the culprit metrics
that make the service abnormal, which is detailed in Section 4.



Anomaly 
Detection

Culprit 
Service 

Localization

Culprit 
Metric

Localization

CSL CML

Yes

Ranked 
culprit 
services

Data Collection

No

Cause list
svc1: m1_list
svc2: m2_list

Fig. 1. Overview of the proposed performance diagnosis system.

4 Culprit Metric Localization (CML)

The underlying assumption of our culprit metric localization of the root cause
lies in the observation that the underlying symptoms for the faulty behaviour
differ from their expected values during normal operation. For example, when
there is an anomaly of type ”memory leak” it is expected that the memory in
the service increases drastically, as compared to the normal operation. In the
most general case, it is not known in advance which metric is contributing the
most and it is the most relevant for the underlying type of fault in an arbitrary
service. Besides, there may exist various inter-relationships between the observed
metrics that manifest differently in normal or abnormal scenarios. Successful
modelling of this information may improve the anomaly detection procedure and
also better pinpoint the potential cause for the anomaly. For example in ”CPU
hog” we experience not only CPU increase but also a slight memory increase.
Thus, some inter-metric relationships may not manifest themselves in same way
during anomalies as normal operation.

To tackle these challenges we adopt the autoencoder architecture. An au-
toencoder is an approach that fits naturally under stressed conditions. The first
advantage of the method is that one can add an arbitrary number of input
metrics. Thus it can include many potential symptoms as potential faults to
be considered at once. The second advantage is that it can correlate arbitrary
relationships within the observed metric data with various complexity based on
the depth and applied nonlinearities.

An autoencoder [5] is a neural network architecture that learns a mapping
from the input to itself. It is composed of an encoder-decoder structure of at least
3 layers: input, hidden and output layer. The encoder provides a mapping from
the input to some intermediate (usually lower-dimensional) representation, while
the decoder provides an inverse mapping from the intermediate representation
back to the input, Thus the cost function being optimized is given as in:

L(X,X) = ||φ(X)− UUTφ(X)||22 (1)

where U can be seen as weights of the encoder-decoder structure learned using
the backpropagation learning algorithm. While there exist various ways how the
mapping from one instance to another can be done, especially interesting is the



(x-x*)2

x x*

(x
2
-x

2
*)2

(x
3
-x

3
*)2

(x
4
-x

4
*)2

(x
5
-x

5
*)2

(x
6
-x

6
*)2

(x
7
-x

7
*)2

(x
1
-x

1
*)2 ctn_cpu

node_cpu

ctn_memory

ctn_network

node_memory

latency_source

latency_destination

Anomaly or Normal

Fig. 2. The inner diagram of the culprit metric localization for anomaly detection and
root cause inference. The Gaussian block produces decision that a point is an anomaly
if it is below a certain probability threshold. The circle with the greatest intensity of
black contributes the most to the error and is pointed as an root cause symptom.

mapping when the hidden layer is of reduced size. This allows to compress the
information from the input and enforce it to learn various dependencies. During
the training procedure, the parameters of the autoencoder are trained using just
normal data from the metrics. This allows us to learn the normal behaviour
of the system. In our approach, we further penalize the autoencoder to enforce
sparse weights and discourage propagation of information that is not relevant
via the L1 regularization technique. This acts in discouraging the modeling of
non-relevant dependancies between the metrics.

Fig. 2 depicts the overall culprit metric localization block. The approach
consists of three units: the autoencoder, anomaly detection and root-cause lo-
calization part. The root-cause localization part produces an ordered list of most
likely cause given the current values of the input metrics. There are two phases
of operation: the offline and online phase. During the offline phase, the parame-
ters of the autoencoder and the gaussian distribution part are tuned. During the
online phase, the input data is presented to the method one point at the time.
The input is propagated through the autoencoder and the anomaly detection
part. The output of the latter is propagated to the root-cause localization part
that outputs the most likely root-cause.

After training the autoencoder, the second step is to learn the parameters of
a Gaussian distribution of the reconstruction error. The underlying assumption
is that the data points that are very similar (e.g., lie within 3σ (standard de-
viations) from the mean) are likely to come from a Gaussian distribution with
the estimated parameters. As such they do not violate the expected values for
metrics. The parameters of the distribution are calculated on a held-out valida-
tion set from normal data points. As each of the services in the system is run in
a separate container and we have the metric for each of them, the autoencoder



can be utilized as an additional anomaly detection method on a service level. As
the culprit service localization module exploits the global dependency graph of
the overall architecture, it suffers from the eminent noise propagated among the
services. While unable to exploit the structure of the architecture, the locality
property of the autoencoder can be used to fine-tune the results from the culprit
service localization module. Thus, with a combination of the strengths of the
two methods, we can produce better results for anomaly detection.

The decision for the most likely symptom is done such that we calculate the
individual errors between the input and the corresponding reconstructed output.
As the autoencoder is constrained to learn normal state, we hypothesize change
of the underlying symptom when an anomaly arises to occur. Hence, for a given
anomaly as a most likely cause, we report the symptom that contributes to the
final error the most.

5 Experimental Evaluation

In this section, we present the experimental setup and evaluate the performance
of our system in identifying the culprit metrics and services.

5.1 Testbed and Evaluation Metrics

To evaluate our system, we set up a testbed on Google Cloud Engine 5, where we
run the Sock-shop 4 microservice benchmark consisting of seven microservices
in a Kubernetes cluster, and the monitoring infrastructures, including the Istio
service mesh6, node-exporter7, Cadvisor8, Prometheus9. Each worker node in the
cluster has 4 virtual CPUs, 15 GB of memory with Container-Optimized OS.
We also developed a workload generator to send requests to different services.

To inject the performance issues in microservices, we customize the Docker
images of the services by installing the fault injection tools. We inject two types
of faults: CPU hog and memory leak, by exhausting the resource CPU and
memory in the container, with stress-ng10, into four different microservices. For
each anomaly, we repeated the experiments 6 times in the duration of at least 3
minutes. To train the autoencoder, we collect data of 2 hours in normal status.

To quantify the performance of our system, we use the following two metrics:

– Precision at top k denotes the probability that the root causes are included
in the top k of the results. For a set of anomalies A, PR@k is defined as:

PR@k =
1

|A|
∑
a∈A

∑
i<k(R[i] ∈ vrc)

(min(k, |vrc|)) (2)

where R[i] is the rank of each cause and vrc is the set of root causes.

6Istio - https://istio.io/
7Node-exporter - https://github.com/prometheus/node_exporter
8Cadvisor - https://github.com/google/cadvisor
9Prometheus - https://prometheus.io/

10stress-ng - https://kernel.ubuntu.com/~cking/stress-ng/



0 1000 2000 3000
0

5

10

15
ctn_cpu

0 1000 2000 3000

0.0

0.5

1.0
ctn_network

0 1000 2000 3000
0.0

0.5

1.0

ctn_memory

0 1000 2000 3000
2
0
2
4

node_cpu

0 1000 2000 3000
0.5

1.0

1.5
node_memory

0 1000 2000 3000
0.0

0.5

1.0

catalogue_source_latency

0 1000 2000 3000
0.0
0.5
1.0
1.5
2.0

catalogue_destination_latency

Fig. 3. Collected metrics when CPU hog is injected to microservice catalogue.

– Mean Average Precision (MAP) quantifies the overall performance of a
method, where N is the number of microservices:

MAP =
1

|A|
∑
a∈A

∑
1≤k≤N

PR@k. (3)

5.2 Effectiveness evaluation

For each anomaly case, we collect the performance metrics from the application
(suffixed with latency) and run-time system, including containers (prefixed with
ctn) and worker nodes (prefixed with node). Fig. 3 gives an example of the
collected metrics when the ”CPU hog” anomaly fault is injected to the catalogue
microservice, repeated six times within one hour. The data collected during the
fault injection is marked in red. The CPU hog fault is expected to be reflected
by the ctn cpu metric. We can see that (i) there are obvious spikes in metrics
ctn cpu and node cpu. The spike of node cpu is caused by the spike of ctn cpu
as container resource usage is correlated to node resource usage; (ii) metrics
ctn memory and node memory also have some deviations; (iii) the fault CPU
hog causes spikes in service latency. Therefore, we can conclude that the fault
injected to the service manifests itself with a significant deviation from normal
status. Meanwhile, it also affects some other metrics.

For each fault injected service, we train the autoencoder with normal data
and test with the anomalous data. Fig. 4 shows the reconstruction errors from
autoencoder for each metric. We can see that the metric ctn cpu has a large error
comparing with other metrics, which indicates it has a higher probability to be
the cause of the anomaly of service catalogue. The second highest reconstruction
error is in the node cpu metric, which is due to its strong correlation with the
container resource usage. Hence, we conclude that ctn cpu is the culprit metric.

Table 1 demonstrates the results of our method on different microservices and
faults, in terms of PR@1, PR@3 and MAP. We observe that our method achieve
a good performance with 100% in PR@1 in different services and faults, except
for the service orders and carts with the fault memory leak. This is because (i)
orders and carts are computation-intensive services; (ii) we exhaust their resource
memory heavily in our fault injection; (iii) fault memory leak issues manifest as



78 80 82 84 86 88 90 92 94 96 98 10
0

10
2

10
4

10
6

10
8

11
0

11
2

11
4

11
6

11
8

timestamp

ctn_cpu

ctn_network

ctn_memory

node_cpu

node_memory

catalogue_source_latency

catalogue_destination_latency

20

40

60

80

100

Fig. 4. Reconstruction errors for each metric when CPU hog is injected to microservice
catalogue.

Table 1. Performance of identifying culprit metrics.

service orders catalogue carts user average

CPU Hog

PR@1 1.0 1.0 1.0 1.0 1.0

PR@3 1.0 1.0 1.0 1.0 1.0

MAP 1.0 1.0 1.0 1.0 1.0

Memory Leak

PR@1 0.83 1.0 0 1.0 0.71

PR@3 0.83 1.0 1.0 1.0 0.96

MAP 0.88 1.0 0.83 1.0 0.93

both high memory usage and high CPU usage. As our method target root cause
that manifests itself with a significant deviation of causal metric, the accuracy
decreases when the root cause manifests in multiple metrics. On average, our
system achieves 85.5% in precision and 96.5% in MAP.

Furthermore, we apply the autoencoder to all of the pinpointed faulty services
by the culprit service localization (CSL) module and analyze its performance of
identifying the culprit services. For example, in an anomaly case where we inject
a CPU hog into service catalogue, the CSL module returns a ranked list and the
real cause service catalogue is ranked as the third. The other two services with
higher rank are service orders and front-end. We leverage autoencoder to these
three services, and the results show (i) autoencoder of service order returns Nor-
mal, which means it is a false positive and can be removed from the ranked list;
(ii) autoencoder of service front-end returns Anomaly, and the highest ranked
metric is the latency, which indicates that the abnormality of front-end is caused
by an external factor, which is the downstream service catalogue. In this case, we
conclude that it is not a culprit service and remove it from the ranked list; (iii)
autoencoder of service catalogue returns Anomaly and the top-ranked metric is



Table 2. Comparisons of identifying culprit services.

Metrics CSL CSL + CML Improvement(%)

PR@1 0.57 0.92 61.4

PR@3 0.83 0.98 18.1

MAP 0.85 0.97 14.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F1-score

0
1
2
3
4
5
6
7
8
9

10

Ra
nk

CSL

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F1-Score

0
1
2
3
4
5
6
7
8
9

10

Ra
nk

CSL + CML

Number 
of cases

1

5

10

Fig. 5. Calibration of culprit service localization with autoencoder.

ctn cpu. Therefore, with autoencoder, we can reduce the number of potential
faulty services from 3 to 1.

Fig. 5 shows the rank of culprit services identified by CSL and the calibra-
tion results with CSL and culprit metric localization module (CSL + CML)
against the F1-score (the harmonic mean of precision and recall) of anomaly
detection for all anomaly cases. We observe that applying autoencoder on the
service relevant metrics can significantly improve the accuracy of culprit service
localization by ranking the faulty service within the top two. Table 2 shows the
overall performance of the above two methods for all anomaly cases. It shows
that complementing culprit service localization with autoencoder can achieve a
precision of 92%, which outperforms 61.4% than the results of CSL only.

6 Related Work

To diagnose the root causes of an issue, various approaches have been proposed
in the literature. Methods and techniques for root cause analysis have been
extensively studied in complex system [13] and computer networks [7].

Recent approaches for cloud services typically focus on identifying coarse-
grained root causes, such as the faulty services that initiate service performance
degradation [8, 15, 9]. In general, they are graph-based methods that construct a
dependency graph of services with knowledge discovery from metrics or provided
service call graph, to show the spatial propagation of faults among services; then
they infer the potential root cause node which results in the abnormality of
other nodes in the graph. For example, Microscope [8] locates the faulty service



by building a service causality graph with the service dependency and service
interference in the same machine. Then it returns a ranked list of potential
culprit services by traversing the causality graph. These approaches can help
operators narrow down the services for investigation. However, the causes set
for an abnormal service are of a wide range, hence it is still time-consuming to
get the real cause of faulty service, especially when the faulty service is low-
ranked in the results of the diagnosis.

Some approaches identify root causes with fine granularity, including not
only the culprit services but also the culprit metrics. Seer [4] is a proactive on-
line performance debugging system that can identify the faulty services and the
problematic resource that causes service performance degradation. However, it
requires instrumentation to the source code; Meanwhile, its performance may
decrease when re-training is frequently required to follow up the updates in
microservices. Loud [10] and MicroCause [11] identify the culprit metrics by
constructing the causality graph of the key performance metrics. However, they
require anomaly detection to be performed on all gathered metrics, which might
introduce many false positives and decrease the accuracy of causes localization.
Álvaro Brandón, et al. [1] propose to identify the root cause by matching the
anomalous graphs labeled by an expert. However, the anomalous patterns are su-
pervised by expert knowledge, which means it can only detect previously known
anomaly types. Besides, the computation complexity of graph matching is expo-
nential to the size of the previous anomalous patterns. Causeinfer [2] pinpoints
both the faulty services and culprit metrics by constructing a two-layer hierarchi-
cal causality graph. However, this system uses a lag correlation method to decide
the causal relationship between services, which requires the lag is obviously in-
cluded in the data. Compared to these methods, our proposed system leverages
the spatial propagation of the service degradation to identify the culprit service
and the deep learning method, which can adapt to arbitrary relationships among
metrics, to pinpoint the culprit metrics.

7 Conclusion and Future Work

In this paper, we propose a system to help cloud operators to narrow down the
potential causes for a performance issue in microservices. The localized causes
are in a fine-granularity, including not only the faulty services but also the culprit
metrics that cause the service anomaly. Our system first pinpoints a ranked list
of potential faulty services by analyzing the service dependencies. Given a faulty
service, it applies autoencoder to its relevant performance metrics and leverages
the reconstruction errors to rank the metrics. The evaluation shows that our
system can identify the culprit services and metrics with high precision.

The culprit metric localization method is limited to identify the root cause
that reflects itself with a significant deviation from normal values. In the future,
we would like to develop methods to cover more diverse root causes by analyzing
the spatial and temporal fault propagation.



Acknowledgment

This work is part of the FogGuru project which has received funding from the European

Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-

Curie grant agreement No 765452. The information and views set out in this publication

are those of the author(s) and do not necessarily reflect the official opinion of the

European Union. Neither the European Union institutions and bodies nor any person

acting on their behalf may be held responsible for the use which may be made of the

information contained therein.

References

1. Álvaro Brandón, et al.: Graph-based root cause analysis for service-oriented and
microservice architectures. Journal of Systems and Software 159, 110432 (2020)

2. Chen, P., Qi, Y., Hou, D.: Causeinfer: Automated end-to-end performance diagno-
sis with hierarchical causality graph in cloud environment. IEEE Transactions on
Services Computing 12(02), 214–230 (2019)

3. Di Francesco, P., Lago, P., Malavolta, I.: Migrating towards microservice architec-
tures: An industrial survey. In: ICSA. pp. 29–2909 (2018)

4. Gan, Y., et al.: Seer: Leveraging big data to navigate the complexity of perfor-
mance debugging in cloud microservices. In: Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems. p. 19–33. ASPLOS ’19 (2019)

5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016), http:
//www.deeplearningbook.org

6. Gulenko, A., et al.: Detecting anomalous behavior of black-box services modeled
with distance-based online clustering. In: 2018 IEEE 11th International Conference
on Cloud Computing (CLOUD). pp. 912–915 (2018)

7.  lgorzata Steinder, M., Sethi, A.S.: A survey of fault localization techniques in
computer networks. Science of Computer Programming 53(2), 165–194 (2004)

8. Lin, J., et al.: Microscope: Pinpoint performance issues with causal graphs in micro-
service environments. In: Service-Oriented Computing. pp. 3–20 (2018)

9. Ma, M., et al.: Automap: Diagnose your microservice-based web applications au-
tomatically. In: Proceedings of The Web Conference 2020. p. 246–258. WWW ’20
(2020)

10. Mariani, L., et al.: Localizing faults in cloud systems. In: ICST. pp. 262–273 (2018)
11. Meng, Y., et al.: Localizing failure root causes in a microservice through causal-

ity inference. In: 2020 IEEE/ACM 28th International Symposium on Quality of
Service (IWQoS). pp. 1–10. IEEE (2020)

12. Newman, S.: Building Microservices. O’Reilly Media, Inc, USA (2015)
13. Solé, M., Muntés-Mulero, V., Rana, A.I., Estrada, G.: Survey on models and tech-

niques for root-cause analysis (2017)
14. Thalheim, J., et al.: Sieve: Actionable insights from monitored metrics in dis-

tributed systems. In: Proceedings of the 18th ACM/IFIP/USENIX Middleware
Conference. p. 14–27 (2017)

15. Wang, P., et al.: Cloudranger: Root cause identification for cloud native systems.
In: CCGRID. pp. 492–502 (2018)

16. Wu, L., et al.: MicroRCA: Root cause localization of performance issues in mi-
croservices. In: NOMS 2020 IEEE/IFIP Network Operations and Management
Symposium (2020)


