Skip to main content

SLMAD: Statistical Learning-Based Metric Anomaly Detection

  • Conference paper
  • First Online:
Service-Oriented Computing – ICSOC 2020 Workshops (ICSOC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12632))

Included in the following conference series:

Abstract

Technology companies have become increasingly data-driven, collecting and monitoring a growing list of metrics, such as response time, throughput, page views, and user engagement. With hundreds of metrics in a production environment, an automated approach is needed to detect anomalies and alert potential incidents in real-time. In this paper, we develop a time series anomaly detection framework called Statistical Learning-Based Metric Anomaly Detection (SLMAD) that allows for the detection of anomalies from key performance indicators (KPIs) in streaming time series data. We demonstrate the integrated workflow and algorithms of our anomaly detection framework, which is designed to be accurate, efficient, unsupervised, online, robust, and generalisable. Our approach consists of a three-stage pipeline including analysis of time series, dynamic grouping, and model training and evaluation. The experimental results show that the SLMAD can accurately detect anomalies on a number of benchmark data sets and Huawei production data while maintaining efficient use of resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39

    Chapter  Google Scholar 

  2. Andrea, K., Shevlyakov, G., Smirnov, P.: Detection of outliers with boxplots (2013)

    Google Scholar 

  3. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 1–58 (2009)

    Article  Google Scholar 

  4. Dang, Y., Lin, Q., Huang, P.: AIOps: real-world challenges and research innovations. In: 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion), pp. 4–5. IEEE (2019)

    Google Scholar 

  5. Doersch, C.: Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908 (2016)

  6. Gao, J., Song, X., Wen, Q., Wang, P., Sun, L., Xu, H.: RobustTAD: robust time series anomaly detection via decomposition and convolutional neural networks. arXiv preprint arXiv:2002.09545 (2020)

  7. Gulenko, A.: Autonomic self-healing in cloud computing platforms (2020)

    Google Scholar 

  8. Hochenbaum, J., Vallis, O.S., Kejariwal, A.: Automatic anomaly detection in the cloud via statistical learning. arXiv preprint arXiv:1704.07706 (2017)

  9. Laptev, N., Yosinski, J., Li, L.E., Smyl, S.: Time-series extreme event forecasting with neural networks at Uber. In: International Conference on Machine Learning, vol. 34, pp. 1–5 (2017)

    Google Scholar 

  10. Liu, D., Zhao, Y., Xu, H., Sun, Y., Pei, D., Luo, J., Jing, X., Feng, M.: Opprentice: towards practical and automatic anomaly detection through machine learning. In: Proceedings of the 2015 Internet Measurement Conference, pp. 211–224 (2015)

    Google Scholar 

  11. Lu, W., Ghorbani, A.A.: Network anomaly detection based on wavelet analysis. EURASIP J. Adv. Signal Process. 2009, 1–16 (2008)

    Article  Google Scholar 

  12. Mahimkar, A., et al.: Rapid detection of maintenance induced changes in service performance. In: Proceedings of the Seventh Conference on Emerging Networking Experiments and Technologies, pp. 1–12 (2011)

    Google Scholar 

  13. Masood, A., Hashmi, A.: AIOps: predictive analytics & machine learning in operations. Cognitive Computing Recipes, pp. 359–382. Apress, Berkeley, CA (2019). https://doi.org/10.1007/978-1-4842-4106-6_7

    Chapter  Google Scholar 

  14. Ren, H., et al.: Time-series anomaly detection service at microsoft. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3009–3017 (2019)

    Google Scholar 

  15. Rosner, B.: Percentage points for a generalized ESD many-outlier procedure. Technometrics 25(2), 165–172 (1983)

    Article  Google Scholar 

  16. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: Deepar: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36(3), 1181–1191 (2020)

    Article  Google Scholar 

  17. Shipmon, D.T., Gurevitch, J.M., Piselli, P.M., Edwards, S.T.: Time series anomaly detection; detection of anomalous drops with limited features and sparse examples in noisy highly periodic data. arXiv preprint arXiv:1708.03665 (2017)

  18. Taylor, S.J., Letham, B.: Forecasting at scale. Am. Stat. 72(1), 37–45 (2018)

    Article  MathSciNet  Google Scholar 

  19. Vercruyssen, V., Meert, W., Davis, J.: Transfer learning for anomaly detection through localized and unsupervised instance selection. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, pp. 6054–6061. AAAI Press (2020)

    Google Scholar 

  20. Walker, M., Dovoedo, Y., Chakraborti, S., Hilton, C.: An improved boxplot for univariate data. Am. Stat. 72(4), 348–353 (2018)

    Article  MathSciNet  Google Scholar 

  21. Wei, L., Kumar, N., Lolla, V.N., Keogh, E.J., Lonardi, S., Ratanamahatana, C.A.: Assumption-free anomaly detection in time series. SSDBM 5, 237–242 (2005)

    Google Scholar 

  22. White, G., Clarke, S.: Short-term qos forecasting at the edge for reliable service applications. IEEE Transactions on Services Computing pp. 1–1 (2020)

    Google Scholar 

  23. Yeh, C.C.M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H.A., Silva, D.F., Mueen, A., Keogh, E.: Matrix profile i: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. In: 2016 IEEE 16th international conference on data mining (ICDM). pp. 1317–1322. Ieee (2016)

    Google Scholar 

  24. Zhang, Y., Ge, Z., Greenberg, A., Roughan, M.: Network anomography. In: Proceedings of the 5th ACM SIGCOMM conference on Internet Measurement. pp. 30–30 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arsalan Shahid , Gary White , Jaroslaw Diuwe , Alexandros Agapitos or Owen O’Brien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shahid, A., White, G., Diuwe, J., Agapitos, A., O’Brien, O. (2021). SLMAD: Statistical Learning-Based Metric Anomaly Detection. In: Hacid, H., et al. Service-Oriented Computing – ICSOC 2020 Workshops. ICSOC 2020. Lecture Notes in Computer Science(), vol 12632. Springer, Cham. https://doi.org/10.1007/978-3-030-76352-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76352-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76351-0

  • Online ISBN: 978-3-030-76352-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics