Abstract
Interactive image segmentation aims to partition the image into background and foreground objects by taking into account seeds inserted by users. Nowadays, many methods are capable of generating segmentations with few user interactions, especially region-based techniques. However, such methods are highly sensitive to seed displacement and quantity, and delineation errors are often propagated to the final segmentation result. Recently, a novel superpixel segmentation framework, named Dynamic and Iterative Spanning Forest (DISF), was proposed, which achieved top delineation performance while assessing many seed-based state-of-the-art methods’ drawbacks. In this work, we propose interactive DISF (iDISF), an interactive segmentation framework, by modifying each step of DISF to consider user-validated information. DISF uses the Image Foresting Transform (IFT) framework for computing an optimum-path forest rooted in a seed set in the delineation step. To consider path and image gradient variation, we propose three new connectivity functions for the IFT. Finally, we also propose two new seed removal strategies for detecting relevant seeds for subsequent iterations. Results show segmentation improvements for minimal user effort—i.e., a single click—and show theoretical advances that may benefit recent optimum-path-based interactive methods from scribbles.
The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq – (PQ 310075/2019-0), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES – (Grant COFECUB 88887.191730/2018-00) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais – FAPEMIG – (Grants PPM-00006-18).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Belém, F.C., Guimarães, S.J.F., Falcão, A.X.: Superpixel segmentation using dynamic and iterative spanning forest. IEEE Signal Proces. Lett. 27, 1440–1444 (2020)
Bragantini, J., Martins, S.B., Castelo-Fernandez, C., Falcão, A.X.: Graph-based image segmentation using dynamic trees. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds.) CIARP 2018. LNCS, vol. 11401, pp. 470–478. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13469-3_55
de Castro Belém, F., Guimarães, S.J.F., Falcão, A.X.: Superpixel segmentation by object-based iterative spanning forest. In: Iberoamerican Congress on Pattern Recognition, pp. 334–341. Springer (2018)
Chen, J., Bai, X.: Thermal face segmentation based on circular shortest path. Infrared Phys. Technol. 97, 391–400 (2019)
Ciesielski, K.C., Falcão, A.X., Miranda, P.A.V.: Path-value functions for which Dijkstra’s algorithm returns optimal mapping. J. Math. Imaging Vis. (2018). https://doi.org/10.1007/s10851-018-0793-1
Condori, M.A.T., Mansilla, L.A.C., Miranda, P.A.V.: Bandeirantes: a graph-based approach for curve tracing and boundary tracking. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds.) ISMM 2017. LNCS, vol. 10225, pp. 95–106. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57240-6_8
Falcão, A., Bragantini, J.: The role of optimum connectivity in image segmentation: can the algorithm learn object information during the process? In: Couprie, M., Cousty, J., Kenmochi, Y., Mustafa, N. (eds.) DGCI 2019. LNCS, vol. 11414, pp. 180–194. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14085-4_15
Falcão, A.X., Stolfi, J., de Alencar Lotufo, R.: The image foresting transform: theory, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 19–29 (2004)
Galvão, F.L., Guimarães, S.J.F., Falcão, A.X.: Image segmentation using dense and sparse hierarchies of superpixels. Pattern Recogn. 108, 107532 (2020). https://doi.org/10.1016/j.patcog.2020.107532. http://www.sciencedirect.com/science/article/pii/S0031320320303356
Gulshan, V., Rother, C., Criminisi, A., Blake, A., Zisserman, A.: Geodesic star convexity for interactive image segmentation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3129–3136. IEEE (2010)
Huang, Q., Huang, Y., Luo, Y., Yuan, F., Li, X.: Segmentation of breast ultrasound image with semantic classification of superpixels. Med. Image Anal. 61, 101657 (2020)
Miranda, P.A.V., Mansilla, L.A.C.: Oriented image foresting transform segmentation by seed competition. IEEE Trans. Image Process. 23(1), 389–398 (2013). https://doi.org/10.1109/TIP.2013.2288867
Peng, B., Zhang, L., Zhang, D.: A survey of graph theoretical approaches to image segmentation. Pattern Recogn. 46(3), 1020–1038 (2013)
Pont-Tuset, J., Marques, F.: Measures and meta-measures for the supervised evaluation of image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2131–2138 (2013)
Rajchl, M., Lee, M.C., Oktay, O., Kamnitsas, K., Passerat-Palmbach, J., Bai, W., Damodaram, M., Rutherford, M.A., Hajnal, J.V., Kainz, B., et al.: Deepcut: object segmentation from bounding box annotations using convolutional neural networks. IEEE Trans. Med. Imaging 36(2), 674–683 (2016). https://doi.org/10.1109/TMI.2016.2621185
Ramadan, H., Lachqar, C., Tairi, H.: A survey of recent interactive image segmentation methods. Comput. Vis. Media 6(4), 355–384 (2020). https://doi.org/10.1007/s41095-020-0177-5
Rauber, P.E., Falcão, A.X., Spina, T.V., de Rezende, P.J.: Interactive segmentation by image foresting transform on superpixel graphs. In: 2013 XXVI Conference on Graphics, Patterns and Images, pp. 131–138. IEEE (2013)
Sung, M.C., Chang, L.W.: Using multi-layer random walker for image segmentation. In: International Workshop on Advanced Image Technology (IWAIT), pp. 1–4. IEEE (2018)
Tang, M., Gorelick, L., Veksler, O., Boykov, Y.: Grabcut in one cut. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1769–1776. IEEE (2013)
Tiwari, A., Srivastava, S., Pant, M.: Brain tumor segmentation and classification from magnetic resonance images: Review of selected methods from 2014 to 2019. Pattern Recogn. Lett. 131, 244–260 (2020)
Vargas-Muñoz, J.E., Chowdhury, A.S., Alexandre, E.B., Galvão, F.L., Miranda, P.A.V., Falcão, A.X.: An iterative spanning forest framework for superpixel segmentation. IEEE Trans. Image Process. 28(7), 3477–3489 (2019)
Vyas, R., Kanumuri, T., Sheoran, G.: Non-parametric iris localization using pupil’s uniform intensities and adaptive masking. In: 2017 14th IEEE India Council International Conference (INDICON), pp. 1–4. IEEE (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Borlido Barcelos, I., Belém, F., Miranda, P., Falcão, A.X., do Patrocínio, Z.K.G., Guimarães, S.J.F. (2021). Towards Interactive Image Segmentation by Dynamic and Iterative Spanning Forest. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2021. Lecture Notes in Computer Science(), vol 12708. Springer, Cham. https://doi.org/10.1007/978-3-030-76657-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-76657-3_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-76656-6
Online ISBN: 978-3-030-76657-3
eBook Packages: Computer ScienceComputer Science (R0)