Skip to main content

Fast Pattern Spectra Using Tree Representation of the Image for Patch Retrieval

  • Conference paper
  • First Online:
Discrete Geometry and Mathematical Morphology (DGMM 2021)

Abstract

We extend the notion of content based image retrieval to patch retrieval where the goal is to find the similar patches to a query patch in a large image. Naive searching for similar patches by sequentially computing and comparing descriptors of sliding windows takes a lot of time in a large image. We propose a novel method to compute descriptors for all sliding windows independent from number of patches. We rely on tree representation of the image and exploit the histogram nature of pattern spectra to compute all the required descriptors in parallel. Computation time of the proposed method depends only on the number of tree nodes and is free from query selection. Experimental results show the effectiveness of the proposed method to reduce the computation time and its potential for object detection in large images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. (ToG) 28, 24 (2009)

    Google Scholar 

  2. Bosilj, P., Aptoula, E., Lefèvre, S., Kijak, E.: Retrieval of remote sensing images with pattern spectra descriptors. ISPRS Int. J. Geo Inf. 5(12), 228 (2016)

    Article  Google Scholar 

  3. Bosilj, P., Kijak, E., Lefèvre, S.: Partition and inclusion hierarchies of images: a comprehensive survey. J. Imaging 4(2), 33 (2018)

    Article  Google Scholar 

  4. Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P.: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016)

    Article  Google Scholar 

  5. Cheng, G., Xie, X., Han, J., Guo, L., Xia, G.S.: Remote sensing image scene classification meets deep learning: challenges, methods, benchmarks, and opportunities. IEEE J. Sel. Top. Appl. Earth Obser. Remote Sens. 13, 3735–3756 (2020)

    Article  Google Scholar 

  6. Jones, R.: Component trees for image filtering and segmentation. In: Coyle, E. (ed.) IEEE Workshop on Nonlinear Signal and Image Processing, Mackinac Island (1997)

    Google Scholar 

  7. Koestinger, M., Hirzer, M., Wohlhart, P., Roth, P.M., Bischof, H.: Large scale metric learning from equivalence constraints. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2288–2295. IEEE (2012)

    Google Scholar 

  8. Li, W., Chen, C., Su, H., Du, Q.: Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 53(7), 3681–3693 (2015)

    Article  Google Scholar 

  9. Li, W., Du, Q.: Gabor-filtering-based nearest regularized subspace for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sensing 7(4), 1012–1022 (2014)

    Article  Google Scholar 

  10. Liu, Y., Zhang, D., Lu, G., Ma, W.Y.: A survey of content-based image retrieval with high-level semantics. Pattern Recogn. 40(1), 262–282 (2007)

    Article  Google Scholar 

  11. Manning, C.D., Schütze, H., Raghavan, P.: Introduction to information retrieval. Cambridge University Press (2008)

    Google Scholar 

  12. Maragos, P.: Pattern spectrum and multiscale shape representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 701–716 (1989)

    Article  Google Scholar 

  13. Paul, S., Pati, U.C.: Remote sensing optical image registration using modified uniform robust sift. IEEE Geosci. Remote Sens. Lett. 13(9), 1300–1304 (2016)

    Article  Google Scholar 

  14. Perret, B., Chierchia, G., Cousty, J., Guimarães, S., Kenmochi, Y., Najman, L.: Higra: hierarchical graph analysis. SoftwareX 10, (2019)

    Google Scholar 

  15. Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 270–279 (2010)

    Google Scholar 

  16. Yu, H.Y., Sun, J.G., Liu, L.N., Wang, Y.H., Wang, Y.D.: MSER based shadow detection in high resolution remote sensing image. In: 2010 International Conference on Machine Learning and Cybernetics, vol. 2, pp. 780–783. IEEE (2010)

    Google Scholar 

Download references

Acknowledgment

This work was funded by DAJ-AR-NO-2018.0010814 project from CNES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Mirmahboub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mirmahboub, B., Moré, J., Youssefi, D., Giros, A., Merciol, F., Lefèvre, S. (2021). Fast Pattern Spectra Using Tree Representation of the Image for Patch Retrieval. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2021. Lecture Notes in Computer Science(), vol 12708. Springer, Cham. https://doi.org/10.1007/978-3-030-76657-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76657-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76656-6

  • Online ISBN: 978-3-030-76657-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics