Skip to main content

An Implementation and Combining of Hybrid and Content Based and Collaborative Filtering Algorithms for the Higher Performance of Recommended Sytems

  • Conference paper
  • First Online:
Computing Science, Communication and Security (COMS2 2021)

Abstract

This article tells about the RS categories and HRS concepts with block diagram and finding out similarity metrices by using the equations and and understanding the datasets and dividing the Train/Test data and road map of hybrid algorithm and categories of algorithms used in RS and how to build HRS and method of combining CB and CF and Hybrid algorithm with customized algorithm by implementing it and evaluating the algorithms accuracy, sparsity and diversity and making a experimental setup on the the SurpriseLib library and loading of non identical algorithms and dataset and examining the results and comparing them against the research objectives and finding whihc algorithms yields the finest results by plotting the graphs for better understanding of the algorithms efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ricci, F., Rokach, L., Shapira, B., Kantor, Paul B. (eds.): Recommender Systems Handbook. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3

    Book  MATH  Google Scholar 

  2. Aggarwal, C.C.: Neighborhood-based collaborative filtering. Recommender Systems, pp. 29–70. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29659-3_2

    Chapter  Google Scholar 

  3. Alshammari, G., Jorro-Aragoneses, J.L., Kapetanakis, S., Petridis, M., Recio-García, J.A., Díaz-Agudo, B.: A hybrid CBR approach for the long tail problem in recommender systems. In: Aha, David W., Lieber, J. (eds.) ICCBR 2017. LNCS (LNAI), vol. 10339, pp. 35–45. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61030-6_3

    Chapter  Google Scholar 

  4. Alshammari, G., Jorro-Aragoneses, J.L., Kapetanakis, S., Polatidis, N., Petridis, M.: A switching approach that ımproves prediction accuracy for long tail recommendations. In: Bi, Y., Bhatia, R., Kapoor, S. (eds.) IntelliSys 2019. AISC, vol. 1037, pp. 18–28. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29516-5_3

    Chapter  Google Scholar 

  5. Alshammari, G., Kapetanakis, S., Polatidis, N., Petridis, M.: A triangle multi-level item-based collaborative filtering method that improves recommendations. In: Pimenidis, E., Jayne, C. (eds.) EANN 2018. CCIS, vol. 893, pp. 145–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98204-5_12

    Chapter  Google Scholar 

  6. Armentano, M.G., Christensen, I., Schiaffino, S.: Applying the technology acceptance model to evaluation of recommender systems (51), 73–79 (2015)

    Google Scholar 

  7. Bremer, S., Schelten, A., Lohmann, E., Kleinsteuber, M.: A framework for training hybrid recommender systems, pp. 30–37 (2017)

    Google Scholar 

  8. Jannach, D., Lerche, L., Kamehkhosh, I., Jugovac, M.: What recommenders recommend: an analysis of recommendation biases and possible countermeasures. User Model. User Adapt. Interact. 25(5), 427–491 (2015b)

    Google Scholar 

  9. Jannach, D., Lerche, L., Jugovac, M.: Item familiarity effects in user-centric evaluations of recommender systems. In: Poster Proceedings of the 9th ACM Conference on Recommender Systems (2015a)

    Google Scholar 

  10. Maksai, A., Garcin, F., Faltings, B.: Predicting online performance of news recommender systems through Richer evaluation metrics. In: Proceedings of the 9th ACM Conference on Recommender Systems, pp. 179–186 (2015)

    Google Scholar 

  11. Cao, C., Ni, Q., Zhai, Y.: An improved collaborative filtering recommendation algorithm based on community detection in social networks. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, (ICCSNT), pp. 1–8 (2015). https://doi.org/10.1145/2739480.2754670

  12. Craw, S., Horsburgh, B., Massie, S.: Music recommendation: audio neighbourhoods to discover music in the long tail. In: Hüllermeier, E., Minor, M. (eds.) ICCBR 2015. LNCS (LNAI), vol. 9343, pp. 73–87. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24586-7_6

    Chapter  Google Scholar 

  13. Fleeson, W., Jayawickreme, E., Jones, A.B.A.P., Brown, N.A., Serfass, D.G., Sherman, R.A., Matyjek-, M.: The use of the genetic algorithms in the recommender systems. J. Pers. Soc. Psychol. 1(1), 1188–1197 (2017). https://doi.org/10.1111/j.1469-7610.2010.02280.x

    Article  Google Scholar 

  14. Barraza-Urbina, A., Heitmann, B., Hayes, C., Carrillo-Ramos, A.: XPLODIV: an exploitation-exploration aware diversification approach for recommender systems. In: Proceedings of the 28th International Florida Artificial Intelligence Research Society Conference (2015)

    Google Scholar 

  15. Harper, F.M., Konstan, J.A.: The MovieLens Datasets: history and context. ACM Trans. Interact. Intell. Syst.5(4), 19:1—19:19 (2015a). https://doi.org/10.1145/2827872

  16. Harper, F.M., Konstan, J.A.: The MovieLens Datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4), 19:1–19:19 (2015b). https://doi.org/10.1145/2827872

  17. Johnson, J., Ng, Y.-K.: Enhancing long tail item recommendations using tripartite graphs and Markov process. In: Proceedings of the International Conference on Web Intelligence - WI 2017, pp. 761–768 (2017)

    Google Scholar 

  18. Wang, S., Gong, M., Li, H., Yang, J.: Knowledge-base d systems multi-objective optimization for long tail recommendation, 104, 145–155 (2016)

    Google Scholar 

  19. Shen, K., Liu, Y., Zhang, Z.: Modified similarity algorithm for collaborative filtering, pp. 378–385 (2017). https://doi.org/10.1007/978-3-319-62698-7

  20. Kumar, R., Sharan, A.: Personalized web search using browsing history and domain knowledge. In: 2014 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), pp. 493–497 (2014). https://doi.org/10.1109/ICICICT.2014.6781332

  21. Laveti, R.N., Ch, J., Pal, S.N., Babu, N.S.C:.2016 IEEE 23rd International Conference on High Performance Computing Workshops A Hybrid Recommender System using Weighted Ensemble Similarity Metrics and Digital Filters (2016). https://doi.org/10.1109/HiPCW.2016.14

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Geluvaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geluvaraj, B., Sundaram, M. (2021). An Implementation and Combining of Hybrid and Content Based and Collaborative Filtering Algorithms for the Higher Performance of Recommended Sytems. In: Chaubey, N., Parikh, S., Amin, K. (eds) Computing Science, Communication and Security. COMS2 2021. Communications in Computer and Information Science, vol 1416. Springer, Cham. https://doi.org/10.1007/978-3-030-76776-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76776-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76775-4

  • Online ISBN: 978-3-030-76776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics