Skip to main content

Event-Related Potential Classification Based on EEG Data Using xDWAN with MDM and KNN

  • Conference paper
  • First Online:
Computing Science, Communication and Security (COMS2 2021)

Abstract

A way of measuring a brain response during cognitive, sensory, or motor event is called event related potential (ERP). Electroencephalography (EEG) data during ERP can be used to cognitive operations. Recently, to classify ERP from EEG signal has begun to apply a compact convolutional neural network (EEGNet) but its performance depends on the data size.

To discriminate between correct and incorrect ERP responses of a subject here a classification algorithm with smoothing of xDAWAN spatial filtering method is proposed. A spatial filtering xDAWAN method extracted only true ERP signal from EEG signal by increasing signal to noise ratio and discarding noise. We have reduced the dimension of the true ERP data by applying Riemannian geometry. Riemannian geometry calculated covariance matrix from true ERP data and all covariance data mapped into a euclidean space called tangent space and produced Riemannian feature vector. Finally, feed this Riemannian feature vector by a machine-learning algorithm to predict ERP response. As a machine-learning algorithm, we used here specially K-nearest neighbor (KNN) and Minimum Distance to Mean (MDM) as a classifier. To evaluate our model, here used EEG data, which contains data for left ear auditory, right ear auditory stimulation and left visualization, right visualization stimulation. xDAWAN is effective due to EEG is a narrow and noisy signal. Performance of Riemannian geometry also not depend on noisy or data size. Our model achieved better performance than other did specially EEGNet. We believe our model will be considered as a great invention in this research domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wolpaw, R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol.: Off. J. Int. Fed. Clin. Neurophysiol. 113(6), 767–791 (2002)

    Google Scholar 

  2. Miah, A.S.M., Rahim, M.A., Shin, J.: Motor-imagery classification using riemannian geometry with median absolute deviation. Electronics 9, 1584 (2020)

    Article  Google Scholar 

  3. MacDonald, D.B.: Electroencephalography: basic principles and applications. In: International Encyclopedia of the Social & Behavioral Sciences, 2nd edn. (2015)

    Google Scholar 

  4. Novak, D.: Biomechatronic applications of brain-computer interfaces. Segil, J. (ed.) Handbook of Biomechatronics, Chap. 5. Academic Press, pp. 129–175. ISBN 9780128125397. http://www.sciencedirect.com/science/article/pii/B9780128125397000088

  5. Zhang, X., Yong, X., Menon, C.: Evaluating the versatility of EEG models generated from motor imagery tasks: an exploratory investigation on upper-limb elbow-centered motor imagery tasks. PLoS ONE 12(11), (2017). https://doi.org/10.1371/journal.pone.0188293

    Article  Google Scholar 

  6. Lotte, F., et al.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10-year update. J. Neural Eng. 15(3), (2018)

    Article  Google Scholar 

  7. Squires, K., Petuchowski, S., Wickens, C., Donchin, E.: The effects of stimulus sequence on event related potentials: a comparison of visual and auditory sequences. Percept. Psychophys. 22(1), 31–40 (1977)

    Article  Google Scholar 

  8. Blundon, E.G., Rumak, S.P., Ward, L.M.: Sequential search asymmetry: behavioral and psychophysiological evidence from a dual oddball task. PLoS ONE 12(3), (2017). https://doi.org/10.1371/journal.pone.0173237

    Article  Google Scholar 

  9. Farwell, L.A., Donchin, E.: Talking off the top of your head: a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1988)

    Article  Google Scholar 

  10. Carabez, E., Sugi, M., Nambu, I., Wada, Y.: Convolutional neural networks with 3D input for P300 identification in auditory brain-computer interfaces. Comput. Intell. Neurosci. 2017, 8163949 (2017)

    Article  Google Scholar 

  11. Kodama, T., Makino, S.: Convolutional neural network architecture and input volume matrix design for ERP classifications in a tactile p 300-based brain-computer interface. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3814–3817 (2017)

    Google Scholar 

  12. Cecotti, H., Graser, A.: Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 433–445 (2011)

    Article  Google Scholar 

  13. Shan, H., Liu, Y., Stefanov, T.: A simple convolutional neural network for accurate P300 detection and character spelling in brain computer interface. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, pp. 1604–1610. International Joint Conferences on Artificial Intelligence Organization (2018)

    Google Scholar 

  14. Liu, M., Wu, W., Gu, Z., Yu, Z., Qi, F., Li, Y.: Deep learning based on batch normalization for P300 signal detection. Neurocomputing 275, 288–297 (2018)

    Article  Google Scholar 

  15. Manor, R., Geva, A.B.: Convolutional neural network for multi-category rapid serial visual presentation BCI. Front. Comput. Neurosci. 9, 146 (2015)

    Article  Google Scholar 

  16. Das, R., Maiorana, E., Campisi, P.: Visually evoked potential for EEG biometrics using convolutional neural network. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 951–955 (2017)

    Google Scholar 

  17. Pereira, A., Padden, D., Jantz, J., Lin, K., Alcaide-Aguirre, R.: Cross-subject EEG event-related potential classification for brain-computer interfaces using residual networks (2018). https://doi.org/10.13140/rg.2.2.16257.10086

  18. Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain computer interfaces, a review. Sensors 12, 1211–1279 (2012). https://doi.org/10.3390/s120201211

    Article  Google Scholar 

  19. Joy, Md.M.H., et al.: Multiclass MI-task classification using logistic regression and filter bank common spatial patterns. In: Chaubey, Nirbhay, Parikh, Satyen, Amin, Kiran (eds.) COMS2 2020. CCIS, vol. 1235, pp. 160–170. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6648-6_13

    Chapter  Google Scholar 

  20. Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain computer interfaces, a review. Sensors 12(2), 1211 (2012)

    Article  Google Scholar 

  21. Bashashati, A., Fatourechi, M., Ward, R.K., Birch, G.E.: A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals. J. Neural Eng. 4(2), R32 (2007)

    Article  Google Scholar 

  22. McFarland, D.J., Anderson, C.W., Muller, K.R., Schlogl, A., Krusienski, D.J.: BCI meeting 2005-workshop on BCI signal processing: feature extraction and translation. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 135–138 (2006)

    Article  Google Scholar 

  23. Lotte, F., Congedo, M., L´ecuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 4(2), R1 (2007)

    Google Scholar 

  24. Zander, T.O., Kothe, C.: Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. J. Neural Eng. 8(2), (2011)

    Article  Google Scholar 

  25. Lawhern, V., Solon, A., Waytowich, N., Gordon, S., Hung, C., Lance, B.: EEGNet: a compact convolutional network for EEG-based brain-computer interfaces. J. Neural Eng. 15, 056013 (2016). https://doi.org/10.1088/1741-2552/aace8c

    Article  Google Scholar 

  26. Tsoi, A.C., So, D.S.C., Sergejew, A.: Classification of electroenchephalogram using artificial neural networks. In: Cowan, J.D., Tesauro, G., Alspector, J. (eds.) Advances in Neural Information Processing Systems, San Francisco, CA. Morgan Kaufmann. vol. 6, pp. 1151–1180 (1994)

    Google Scholar 

  27. Vasios, C., Papageorgiou, C., Matsopoulos, G.K., Nikita, K.S., Uzunoglu, N.: A decision support system of evoked potentials for the classification of patients with first-episode schizophrenia. German J. Psychiatry 5, 78–84 (2002)

    Google Scholar 

  28. Anderson, C.W., Stolz, E.A., Shamsunder, S.: Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks. IEEE Trans. Biomed. Eng. 45(3), 277–286 (1998)

    Article  Google Scholar 

  29. Franaszczuk, P.J., Blinowska, K.J., Kowalczyk, M.: The application of parametric multichannel spectral estimates in the study of electrical brain activity. Biol. Cybern. 51(4), 239–247 (1985)

    Article  Google Scholar 

  30. Rakotomamonjy, A., Guigue, V.: BCI Competition III: Dataset II Ensemble of SVMs for BCI P300 Speller. IEEE Trans. Biomed. Eng. 55(3), 1147–1154 (2008)

    Article  Google Scholar 

  31. Muller, K.-R., Mika, S., Ratsch, G., Tsuda, K., Scholkopf, B.: An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12(2), 181–201 (2001)

    Article  Google Scholar 

  32. Hoffmann, U., Garcia, G., Vesin, J.-M., Diserens, K., Ebrahimi, T.: A boosting approach to P300 detection with application to braincomputer interfaces. In: IEEE EMBS Conference on Neural Engineering (2005)

    Google Scholar 

  33. Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29(9), 2352–2449 (2017)

    Article  MathSciNet  Google Scholar 

  34. Hassan, M., Shamas, M., Khalil, M., El Falou, W., Wendling, F.: EEGNET: an open source tool for analyzing and visualizing M/EEG connectome. PLoS ONE 10(9), (2015). https://doi.org/10.1371/journal.pone.0138297

    Article  Google Scholar 

  35. Woehrle, H., Krell, M.M., Straube, S., Kim, S.K., Kirchner, E.A., Kirchner, F.: An adaptive spatial filter for user-independent single trial detection of event-related potentials. IEEE Trans. Biomed. Eng. 62(7), 1696–1705 (2015)

    Article  Google Scholar 

  36. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Muller, K.-R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Sig. Process. Mag. 25(1), 41–56 (2008)

    Article  Google Scholar 

  37. Rivet, B., Cecotti, H., Perrin, M., Maby, E., Mattout, J.: Adaptive training session for a P300 speller brain-computer interface. J. Physiol. Paris 105(1–3), 123–129 (2011)

    Google Scholar 

  38. Higashi, H., Rutkowski, T.M., Tanaka, T., Tanaka, Y.: Smoothing of xDAWN spatial filters for robust extraction of event-related potentials, pp. 1–5 (2016). https://doi.org/10.1109/apsipa.2016.7820750

  39. Rivet, B., Souloumiac, A., Attina, V., Gibert, G.: xDAWN algorithm to enhance evoked potentials: application to brain-computer interface. IEEE Trans. Biomed. Eng. 56(8), 2035–2043 (2009). https://doi.org/10.1109/tbme.2009.2012869

    Article  Google Scholar 

  40. Miah, A.S.M., Islam, M.R., Molla, M.K.I.: Motor imagery classification using subband tangent space mapping. In: International Conference on Computer and Information Technology-2017 held on University of Asia Pacific, Dhaka, Bangladesh (2017)

    Google Scholar 

  41. Miah, A.S.M., Islam, M.R., Molla, M.K.I.: EEG classification for MI-BCI using CSP with averaging covariance matrices: an experimental study. In: International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2 2019), Bangladesh (2019)

    Google Scholar 

  42. Miah, A.S.M., Ahmed, S.R.A., Ahmed, M.R., Bayat, O., Duru, A.D., Molla, M.K.I.: Motor-Imagery BCI task classification using riemannian geometry and averaging with mean absolute deviation. In: International Scientific Meeting of Electrical-Electronics & Biomedical Engineering & Computer Science EBBT 2019 held on Istanbul Arel University, 24–26 April 2019, Kemal Gözükara Campus in Istanbul Arel University, Turkey (2019)

    Google Scholar 

  43. Beres, A.M.: Time is of the essence: a review of electroencephalography (EEG) and event-related brain potentials (ERPs) in language research. Appl. Psychophysiol. Biofeedback 42, 247–255 (2017). https://doi.org/10.1007/s10484-017-9371-3

    Article  Google Scholar 

  44. Schalk, G., McFarland, D., Hinterberger, T., Birbaumer, N.R., Wolpaw, J.: BCI2000: a general-purpose Brain-Computer Interface (BCI) system. IEEE Trans. Biomed. Eng. 51, 1034–1043 (2004). https://doi.org/10.1109/tbme.2004.827072

    Article  Google Scholar 

  45. Goldberger, A., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), E215–E220 (2000)

    Article  Google Scholar 

  46. Waytowich, N., et al.: Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials. J. Neural Eng. (2018). SP - 066031, IS - 6, VL - 15, SN - 1741-2560, SN - 1741-2552

    Google Scholar 

  47. Rivet, B., Cecotti, H., Souloumiac, A., Maby, E., Mattout, J.: Theoretical analysis of xDAWN algorithm: application to an efficient sensor selection in a P300 BCI. In: Proceedings of EUSIPCO-2011, pp. 1382–1386, Barcelona. IEEE (2011). https://ieeexplore.ieee.org/document/7073970

  48. Rivet, B., Souloumiac, A., Gibert, G., Attina, V.: P300 speller” Brain-Computer Interface: Enhancement of P300 evoked potential by spatial filters. In: Proceedings of European Signal Processing Conference (EUSIPCO), Lausanne, Switzerland, August 2008

    Google Scholar 

  49. Ferracuti, F., et al.: A functiona source separation algorithm to enhance error related potentials monitoring in noninvasive brain-computer interface. Comput. Methods Prog. Biomed. 191, (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miah, A.S.M., Mouly, M.A., Debnath, C., Shin, J., Sadakatul Bari, S.M. (2021). Event-Related Potential Classification Based on EEG Data Using xDWAN with MDM and KNN. In: Chaubey, N., Parikh, S., Amin, K. (eds) Computing Science, Communication and Security. COMS2 2021. Communications in Computer and Information Science, vol 1416. Springer, Cham. https://doi.org/10.1007/978-3-030-76776-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76776-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76775-4

  • Online ISBN: 978-3-030-76776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics