Skip to main content

Graph Representation for Learning the Traveling Salesman Problem

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12725))

Included in the following conference series:

Abstract

Training deep learning models for solving the Travelling Salesman Problem (TSP) directly on large instances is computationally challenging. An approach to tackle large-scale TSPs is through identifying elements in the model or training procedure that promotes out-of-distribution (OoD) generalization, i.e., generalization to samples larger than those seen in training. The state-of-the-art TSP solvers based on Graph Neural Networks (GNNs) follow different strategies to represent the TSP instances as input graphs. In this paper, we conduct experiments comparing different graph representations finding features that lead to a better OoD generalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angeniol, B., Vaubois, G.D.L.C., Le Texier, J.Y.: Self-organizing feature maps and the travelling salesman problem. Neural Netw. 1(4), 289–293 (1988)

    Article  Google Scholar 

  2. Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP solver (2006)

    Google Scholar 

  3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  4. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940 (2016)

  5. Bresson, X., Laurent, T.: Residual gated graph convnets. arXiv preprint arXiv:1711.07553 (2017)

  6. Dai, H., Dai, B., Song, L.: Discriminative embeddings of latent variable models for structured data. In: International Conference on Machine Learning, pp. 2702–2711 (2016)

    Google Scholar 

  7. Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.-M.: Learning heuristics for the TSP by policy gradient. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 170–181. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_12

    Chapter  Google Scholar 

  8. Durbin, R., Willshaw, D.: An analogue approach to the travelling salesman problem using an elastic net method. Nature 326(6114), 689–691 (1987)

    Article  Google Scholar 

  9. Fort, J.: Solving a combinatorial problem via self-organizing process: an application of the Kohonen algorithm to the traveling salesman problem. Biol. Cybern. 59(1), 33–40 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. Hopfield, J.J., Tank, D.W.: “neural” computation of decisions in optimization problems. Biol. Cybern. 52(3), 141–152 (1985)

    MATH  Google Scholar 

  12. Joshi, C.K., Cappart, Q., Rousseau, L.M., Laurent, T., Bresson, X.: Learning TSP requires rethinking generalization. arXiv preprint arXiv:2006.07054 (2020)

  13. Joshi, C.K., Laurent, T., Bresson, X.: An efficient graph convolutional network technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227 (2019)

  14. Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial optimization algorithms over graphs. In: Advances in Neural Information Processing Systems, pp. 6348–6358 (2017)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  16. Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems! arXiv preprint arXiv:1803.08475 (2018)

  17. Ma, Q., Ge, S., He, D., Thaker, D., Drori, I.: Combinatorial optimization by graph pointer networks and hierarchical reinforcement learning. arXiv preprint arXiv:1911.04936 (2019)

  18. Milan, A., Rezatofighi, S., Garg, R., Dick, A., Reid, I.: Data-driven approximations to np-hard problems. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  19. Nazari, M., Oroojlooy, A., Snyder, L., Takác, M.: Reinforcement learning for solving the vehicle routing problem. In: Advances in Neural Information Processing Systems, pp. 9839–9849 (2018)

    Google Scholar 

  20. Riedmiller, M.: Neural fitted Q iteration – first experiences with a data efficient neural reinforcement learning method. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 317–328. Springer, Heidelberg (2005). https://doi.org/10.1007/11564096_32

    Chapter  Google Scholar 

  21. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 27, 3104–3112 (2014)

    Google Scholar 

  22. Sutton, R.S., Barto, A.G., et al.: Introduction to Reinforcement Learning, vol. 135. MIT press Cambridge (1998)

    Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  24. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  25. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. Adv. Neural Inf. Process. Syst. 28, 2692–2700 (2015)

    Google Scholar 

  26. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992)

    MATH  Google Scholar 

Download references

Acknowledgement

R. Menchaca and E. Zamora would like to acknowledge the support provided by CIC-IPN in carrying out this research. This work was economically supported by SIP-IPN (grant numbers 20211096, 20210316). O. Gutiérrez acknowledges CONACYT for the scholarship granted towards pursuing his postgraduate studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Gutiérrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gutiérrez, O., Zamora, E., Menchaca, R. (2021). Graph Representation for Learning the Traveling Salesman Problem. In: Roman-Rangel, E., Kuri-Morales, Á.F., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2021. Lecture Notes in Computer Science(), vol 12725. Springer, Cham. https://doi.org/10.1007/978-3-030-77004-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77004-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77003-7

  • Online ISBN: 978-3-030-77004-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics