Skip to main content

Extremal Topologies for the Merrifield-Simmons Index on Dynamic Trees

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12725))

Included in the following conference series:

  • 811 Accesses

Abstract

In this article, we study the recognition of extremal topologies for the Merrifield-Simmons index in the space of tree graphs. We analyze how to obtain the maximum and the minimum number of independent set on these topologies when a new vertex v is joined to a tree \(T_n\) via a new edge \(\{v_p,v\}\), with \(v_p \in V(T_n)\) and \(v \notin V(T_n)\).

We show that \(i(T_n \cup \{ \{v_p, v\} \})\) is minimum when v is a new leaf node, and its father \(v_p\) was also a leaf node in \(T_n\). In addition, the father \(v_h\) of \(v_p\) has a maximal degree in \(T_n\), and as a last criterion, \(v_p\) has a maximal eccentricity into the nodes in \(T_n\) with maximal degree. On the other hand, we show that \(i(T \cup \{ \{v_p, v\} \})\) is maximum when v is linked to a vertex \(v_p\) with maximal degree in \(T_n\), and \(v_p\) has a greater number of neighbors with minimal degree in \(T_n\).

In memory of Miguel Rodríguez.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pedersen, A.S., Vestergaard, P.D.: The number of independent sets in unicyclic graphs. Discret. Appl. Math. 152(1–3), 246–256 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Deng, H.: The smallest Merrifield-Simmons index of \((n, n+1)\)-graphs. Math. Comput. Model. 49(s1–2), 320–326 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Prodinger, H., Tichy, R.F.: Fibonacci numbers of graphs. Fibonacci Q. 20(1), 16–21 (1982)

    MathSciNet  MATH  Google Scholar 

  4. Deng, H.: Catacondensed benzenoids and phenylenes with the extremal third-order Randić index. MATCH Commun. Math. Comput. Chem. 64(2), 471–496 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Wagner, S., Gutman, I.: Maxima and minima of the Hosoya index and the Merrifield-Simmons index. Acta Appl. Math. 112, 323–346 (2010). https://doi.org/10.1007/s10440-010-9575-5

    Article  MathSciNet  MATH  Google Scholar 

  6. Shiu, W.C.: Extremal Hosoya index and Merrifield-Simmons index of hexagonal spiders. Discret. Appl. Math. 156(15), 2978–2985 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, X., Zhao, H., Gutman, I.: On the Merrifield-Simmons index of trees. MATCH Commun. Math. Comput. Chem. 54, 389–402 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Lv, X., Yu, A.: The Merrifield-Simmons and Hosoya indices of trees with a given maximum degree. MATCH Commun. Math. Comput. Chem. 56, 605–616 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Cao, Y., Zhang, F.: Extremal polygonal chains on \(k\)-matchings. MATCH Commun. Math. Comput. Chem. 60, 217–235 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Herbert, S.W.: The number of maximal independent sets in a tree. Siam J. Alg. Disc. Meth. 7(1), 125–130 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Merrifield, R.E., Simmons, H.E.: Topological Methods in Chemistry. Wiley, New York (1989)

    Google Scholar 

  12. Greenhill, C.: The complexity of counting colourings and independent sets in sparse graphs and hypergraphs. Comput. Complex. 9(1), 52–72 (2000). https://doi.org/10.1007/PL00001601

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bello, P., Rodríguez, M., De Ita, G. (2021). Extremal Topologies for the Merrifield-Simmons Index on Dynamic Trees. In: Roman-Rangel, E., Kuri-Morales, Á.F., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2021. Lecture Notes in Computer Science(), vol 12725. Springer, Cham. https://doi.org/10.1007/978-3-030-77004-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77004-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77003-7

  • Online ISBN: 978-3-030-77004-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics