Skip to main content

Age-Related Walkability Assessment: A Preliminary Study Based on the EMG

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12414))

Abstract

Populations around the world are rapidly ageing as the population aged 65 and over is growing faster than all other age groups. Most of the daily life actions of active elderly are related to walking activities, thus guaranteeing walking environments that are elderly-friendly are nowadays a priority to ensure healthy aging. Measuring and recognizing the affective state of people during walking activities contribute to a better comprehension of their perception of the environment, and a better definition of walkable urban area. With the aim of paving the way for assessing walkability, introducing quantitative evaluation tools, this work proposes to compare physiological responses of subjects of different ages, in different walking conditions. To this end a proper experiment has been designed in a controlled environment, considering both young adults and elderly, and adopting wearable devices. In this paper the analysis of the leg muscles activity acquired with Electromyography is presented. The results of this preliminary study highlight age-related differences in subjects facing both forced speed walks and collision avoidance tasks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.shimmersensing.com/.

References

  1. Bandini, S., Gasparini, F.: Towards affective walkability for healthy ageing in the future of the cities. In: Proceedings of the 5th Workshop on Artificial Intelligence for Ambient Assisted Living, AIxIA 2019, vol. 2559. CEUR-WS (2020)

    Google Scholar 

  2. U.S. Census Bureau: 2017 National Population Projections Datasets (2017)

    Google Scholar 

  3. Can, Y.S., Arnrich, B., Ersoy, C.: Stress detection in daily life scenarios using smart phones and wearable sensors: a survey. J. Biomed. Inform. 92, 103139 (2019)

    Article  Google Scholar 

  4. Donoho, D.L., Johnstone, J.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)

    Article  MathSciNet  Google Scholar 

  5. Gaglione, F., Cottrill, C., Gargiulo, C.: Urban services, pedestrian networks and behaviors to measure elderly accessibility. Transp. Res. Part D: Transp. Environ. 90, 102687 (2021)

    Article  Google Scholar 

  6. Halaki, M., Ginn, K.: Normalization of EMG signals: to normalize or not to normalize and what to normalize to. In: Computational Intelligence in Electromyography Analysis-A Perspective on Current Applications and Future Challenges, pp. 175–194 (2012)

    Google Scholar 

  7. Hoeger, W.W., Bond, L., Ransdell, L., Shimon, J.M., Merugu, S.: One-mile step count at walking and running speeds. ACSM’s Health Fitness J. 12(1), 14–19 (2008)

    Article  Google Scholar 

  8. Hu, B., Dixon, P., Jacobs, J., Dennerlein, J., Schiffman, J.: Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface-and age-related differences in walking. J. Biomech. 71, 37–42 (2018)

    Article  Google Scholar 

  9. Ji, T., Pachi, A.: Frequency and velocity of people walking. Struct. Eng. 84(3), 36–40 (2005)

    Google Scholar 

  10. Kim, H.: Wearable sensor data-driven walkability assessment for elderly people. Sustainability 12(10), 4041 (2020)

    Article  Google Scholar 

  11. King, A.C., et al.: Employing participatory citizen science methods to promote age-friendly environments worldwide. Int. J. Environ. Res. Public Health 17(5), 1541 (2020)

    Article  Google Scholar 

  12. Le, T.P.L., Leung, A., Kavalchuk, I., Nguyen, H.N.: Age-proofing a traffic saturated metropolis-evaluating the influences on walking behaviour in older adults in Ho Chi Minh City. Travel Behav. Soc. 23, 1–12 (2021)

    Article  Google Scholar 

  13. Lee, G., Choi, B., Jebelli, H., Ahn, C.R., Lee, S.: Wearable biosensor and collective sensing-based approach for detecting older adults’ environmental barriers. J. Comput. Civ. Eng. 34(2), 04020002 (2020)

    Article  Google Scholar 

  14. Moon, S., et al.: Classification of Parkinson’s disease and essential tremor based on balance and gait characteristics from wearable motion sensors via machine learning techniques: a data-driven approach. J. NeuroEng. Rehabil. 17(1), 1–8 (2020)

    Article  Google Scholar 

  15. Phinyomark, A., Limsakul, C., Phukpattaranont, P.: A novel feature extraction for robust EMG pattern recognition. arXiv preprint arXiv:0912.3973 (2009)

  16. Wei, G., Tian, F., Tang, G., Wang, C.: A wavelet-based method to predict muscle forces from surface electromyography signals in weightlifting. J. Bionic Eng. 9(1), 48–58 (2012)

    Article  Google Scholar 

  17. Wren, M.A., et al.: Projections of demand for healthcare in Ireland, 2015–2030: first report from the Hippocrates model. ESRI Research Series Number 67 October 2017 (2017)

    Google Scholar 

  18. Yetisen, A.K., Martinez-Hurtado, J.L., Ünal, B., Khademhosseini, A., Butt, H.: Wearables in medicine. Adv. Mater. 30(33), 1706910 (2018)

    Article  Google Scholar 

  19. Zhang, X., Tang, X., Zhu, X., Gao, X., Chen, X., Chen, X.: A regression-based framework for quantitative assessment of muscle spasticity using combined EMG and inertial data from wearable sensors. Front. Neurosci. 13, 398 (2019)

    Article  Google Scholar 

Download references

Acknowledgment

This research is partially supported by Fondazione Cariplo, for the project LONGEVICITY - Social Inclusion for the Elderly through Walkability (Ref. 2017-0938) and by the Japan Society for the Promotion of Science (Ref. L19513). We want to give our thanks to Kenichiro Shimura and Daichi Yanagisawa, for their supporting work during the experimentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Gasparini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gasparini, F., Grossi, A., Nishinari, K., Bandini, S. (2021). Age-Related Walkability Assessment: A Preliminary Study Based on the EMG. In: Baldoni, M., Bandini, S. (eds) AIxIA 2020 – Advances in Artificial Intelligence. AIxIA 2020. Lecture Notes in Computer Science(), vol 12414. Springer, Cham. https://doi.org/10.1007/978-3-030-77091-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77091-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77090-7

  • Online ISBN: 978-3-030-77091-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics