Skip to main content

P System as a Computing Tool for Embedded Feature Selection and Classification Method for Microarray Cancer Data

  • Conference paper
  • First Online:
Membrane Computing (CMC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12687))

Included in the following conference series:

  • 205 Accesses

Abstract

Selection of relevant genes is the crucial task for sample classification in microarray data, where researchers try to identify the smallest possible set of genes that can still achieve good predictive performance. Due to the problem of higher risk of overfitting in wrapper methods and sensitivity of the best embedded way to filter out factor that leads to unstable model and significantly different gene subsets, in this paper, we propose a novel model for evaluating and improving techniques for selecting informative genes from microarray data. This model inspired by membrane computing and used the kernel P system (kP) as the variant of the P system to improve the performance of the intelligent algorithm, multi-objective binary particle swarm optimization (MObPSO). The proposed model consists of two main parts. First, kP-MObPSO, which resembles a wrapper type feature selection, and the second part that improves the results of the first part through an embedded feature selection and classification idea based on the kP system. Division, rewriting, and input/output rules are used to make interaction among the genes inside and between the particles. The proposed model applied to the colorectal and breast dataset contains 100 genes with six attributes. The embedded part of the model extracts the marker gene sets indicate more stability and reliability based on ROC measure as well as better error rate in comparison to the wrapper part of the model. In the paper, the lowest error rate by an embedded model is displayed as 0.1111 for breast cancer and 0.0769 for colorectal data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)

    Article  MathSciNet  Google Scholar 

  2. Zhang, G., Haina, R., Ferrante, R., Pérez-Jiménez, M.J.: An optimization spiking neural P system for approximately solving combinatorial optimization problems. Int. J. Neural Syst. 24(5), 1440006 (2014)

    Article  Google Scholar 

  3. Huang, L., Wang, N.: An optimization algorithm inspired by membrane computing. In: Jiao, L., Wang, L., Gao, X., Liu, J., Wu, F. (eds.) ICNC 2006. LNCS, vol. 4222, pp. 49–52. Springer, Heidelberg (2006). https://doi.org/10.1007/11881223_7

    Chapter  Google Scholar 

  4. Frisco, P., Corne, D.W.: Modeling the dynamics of HIV infection with Conformon-P systems and cellular automata. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 21–31. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77312-2_2

    Chapter  Google Scholar 

  5. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Romero-Campero, F.J.: Simulating avascular tumors with membrane systems. In: Proceedings of the Third Brainstorming Week on Membrane Computing, pp. 185–196. Fénix Editora, Sevilla (Spain) (2005)

    Google Scholar 

  6. Pérez-Jiménez, M.J., Romero-Campero, F.J.: A study of the robustness of the EGFR signalling cascade using continuous membrane systems. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3561, pp. 268–278. Springer, Heidelberg (2005). https://doi.org/10.1007/11499220_28

    Chapter  Google Scholar 

  7. Bernardini, F., Gheorghe, M., Krasnogor, N.: Quorum sensing P systems. Theor. Comput. Sci. 371(1), 20–33 (2007)

    Article  MathSciNet  Google Scholar 

  8. Muniyandi, R.C., Zin, A.M., Sanders, J.: Converting differential-equation models of biological systems to membrane computing. BioSystems 114(3), 219–226 (2013)

    Article  Google Scholar 

  9. Siegel, R., DeSantis, C., Jemal, A.: Colorectal cancer statistics. CA: Cancer J. Clin. 64(2), 104–117 (2014)

    Google Scholar 

  10. Gheorghe, M., Ipate, F., Dragomir, C., Mierla, L., Valencia-Cabrera, L., Garcia-Quismondo, M., Pérez-Jiménez, M.J.: Kernel P Systems Version I. In: Proceedings of the Eleventh Brainstorming Week on Membrane Computing, pp. 97–124. Fénix Editora, Sevilla(Spain) (2013)

    Google Scholar 

  11. Mohapatra, P., Chakravarty, S.: Modified PSO based feature selection for microarray data classification. In: Proceedings of the 2015 IEEE Power, Communication and Information Technology Conference (PCITC). IEEE, Bhubaneswar (India) (2015)

    Google Scholar 

  12. Kar, S., Sharma, K.D., Maitra, M.: Gene selection from microarray gene expression data for classification of cancer subgroups employing PSO and adaptive K-nearest neighborhood technique. Expert Syst. Appl. 42(1), 612–627 (2015)

    Article  Google Scholar 

  13. Chinnaswamy, A., Srinivasan, R.: Hybrid feature selection using correlation coefficient and particle swarm optimization on microarray gene expression data. In: Snášel, V., Abraham, A., Krömer, P., Pant, M., Muda, A.K. (eds.) Innovations in Bio-Inspired Computing and Applications. AISC, vol. 424, pp. 229–239. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28031-8_20

    Chapter  Google Scholar 

  14. Mandal, M., Mukhopadhyay, A.: A graph-theoretic approach for identifying non-redundant and relevant gene markers from microarray data using multi-objective binary PSO. PloS One 9(3), e90949 (2014)

    Article  Google Scholar 

  15. Apolloni, J., Leguizamón, G., Alba, E.: Two-hybrid wrapper-filter feature selection algorithms applied to high-dimensional microarray experiments. Appl. Soft Comput. 38, 922–932 (2016)

    Article  Google Scholar 

  16. Elyasigomari, V., Mirjafari, M.S., Screen, H.R.C., Shaheed, M.H.: Cancer classification using a novel gene selection approach by means of shuffling based on data clustering with optimization. Appl. Soft Comput. 35, 43–51 (2015)

    Article  Google Scholar 

  17. Sheikhpour, R., Sarram, M.A., Sheikhpour, R.: Particle swarm optimization for bandwidth determination and feature selection of kernel density estimation-based classifiers in diagnosis of breast cancer. Appl. Soft Comput. 40, 113–131 (2016)

    Article  Google Scholar 

  18. Duan, K., Rajapakse, J.C.: A variant of SVM-RFE for gene selection in cancer classification with expression data. In: Proceedings of the 2004 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE, La Jolla (USA) (2004)

    Google Scholar 

  19. Tang, Y., Zhang, Y.Q., Huang, Z.: Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(3), 365–381 (2007)

    Article  Google Scholar 

  20. Huerta, E.B., Montiel, A.H., Caporal, R.M., Lopez, M.A: Hybrid framework using multiple-filters and an embedded approach for an efficient and robust selection and classification of microarray data. IEEE/ACM Trans. Comput. Biol. Bioinform 13(1), 12–26 (2015)

    Google Scholar 

  21. Pashaei, E., Ozen, M., Aydin, N.: Gene selection and classification approach for microarray data based on Random Forest Ranking and BBHA. In: Proceedings of the 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). IEEE, Las Vegas (USA) (2016)

    Google Scholar 

  22. Shapiro, G.P., Tamayo, P.: Microarray data mining: facing the challenges. ACM SIGKDD Explor. Newslett. 5(2), 1–5 (2003)

    Article  Google Scholar 

  23. Hall, M.A.: Correlation-based feature selection for machine learning. The University of Waikato, Hamilton (New Zealand) (1999). https://www.cs.waikato.ac.nz/~mhall/thesis.pdf. Accessed 20 July 2020

  24. Koller, D., Sahami, M.: Toward optimal feature selection. In: Proceedings of the Thirteenth International Conference on International Conference on Machine Learning (ICML), pp. 284–292. Morgan Kaufmann Publishers Inc., San Francisco (USA) (1996)

    Google Scholar 

  25. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 5, 1205–1224 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10), 906–914 (2000)

    Article  Google Scholar 

  27. Lin, S.W., Ying, K.C., Chen, S.C., Lee, Z.J.: Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst. Appl. 35(4), 1817–1824 (2008)

    Article  Google Scholar 

  28. Rahman, M.A., Muniyandi, R.C.: An enhancement in cancer classification accuracy using a two-step feature selection method based on artificial neural networks with 15 neurons. Symmetry 12, 271 (2020)

    Article  Google Scholar 

  29. Scholkopf, B., Guyon, I., Weston, J.: Statistical Learning and Kernel Methods in Bioinformatics. IOS Press, Amsterdam (2003)

    Google Scholar 

  30. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002). https://doi.org/10.1023/A:1012487302797

    Article  MATH  Google Scholar 

  31. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)

    Article  Google Scholar 

  32. Schlicker, A., et al.: Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines. BMC Med. Genomics 5(1), 66 (2012). https://doi.org/10.1186/1755-8794-5-66

    Article  Google Scholar 

  33. Elkhani, N., Muniyandi, R.C., Zhang, G.: Multi-objective binary PSO with kernel P system on GPU. Int. J. Comput. Commun. Control 13(3), 323–336 (2018)

    Article  Google Scholar 

  34. Elkhani, N., Muniyandi, R.C.: A multiple core execution for multiobjective binary particle swarm optimization feature selection method with the kernel P system framework. J. Optimiz. 13, 1–14 (2017)

    Article  MathSciNet  Google Scholar 

  35. Muniyandi, R.C., Maroosi, A.: A representation of membrane computing with a clustering algorithm on the graphical processing unit. Processes 8(9), 1199 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The efforts of grant for Development of Membrane Computing Software (Universiti Kebangsaan Malaysia (UKM), UKM Grant Code: GGP-2019-023) has been acknowledged, as this support has played a vital role in the successful accomplishment of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravie Chandren Muniyandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muniyandi, R.C., Elkhani, N. (2021). P System as a Computing Tool for Embedded Feature Selection and Classification Method for Microarray Cancer Data. In: Freund, R., Ishdorj, TO., Rozenberg, G., Salomaa, A., Zandron, C. (eds) Membrane Computing. CMC 2020. Lecture Notes in Computer Science(), vol 12687. Springer, Cham. https://doi.org/10.1007/978-3-030-77102-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77102-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77101-0

  • Online ISBN: 978-3-030-77102-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics