
              

City, University of London Institutional Repository

Citation: O’Sullivan, D., Basaru, R., Stumpf, S. & Maiden, N. (2021). Monitoring Quality of 

Life Indicators at Home from Sparse, and Low-Cost Sensor Data. Paper presented at the 
International Conference on Artificial Intelligence in Medicine, 15-18 Jun 2021, Virtual Event.
doi: 10.1007/978-3-030-77211-6_17 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/26591/

Link to published version: https://doi.org/10.1007/978-3-030-77211-6_17

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Monitoring Quality of Life Indicators at Home from 

Sparse and Low-Cost Sensor Data 

Dympna O’Sullivan1 Rilwan Basaru2 Simone Stumpf2 and Neil Maiden2 

1 ASCNet Reseach Group, School of Computer Science, TU Dublin, Dublin, Ireland  
2 City, University of London, London, UK 

dympna.osullivan@tudublin.ie, remilekun.basaru.1@city.ac.uk, 
simone.stumpf.1@city.ac.uk, neil.maiden.1@city.ac.uk 

Abstract. Supporting older people, many of whom live with chronic conditions, 

cognitive and physical impairments to live independently at home is of increasing 

importance due to ageing demographics. To aid independent living at home, 

much effort is being directed at reliably detecting activities from sensor data to 

monitor people’s quality of life or to enhance self-management of their own 

health. Current efforts typically leverage large numbers of sensors to overcome 

challenges in the accurate detection of activities. In this work, we report on the 

results of machine learning models based on data collected with a small number 

of low-cost, off-the-shelf passive sensors that were retrofitted in real homes, 

some with more than a single occupant. Models were developed from sensor data 

to recognize activities of daily living, such as eating and dressing as well as 

meaningful activities, such as reading a book and socializing. We found that a 

Recurrent Neural Network was most accurate in recognizing activities. However, 

many activities remain difficult to detect, in particular meaningful activities, 

which are characterized by high levels of individual personalization. 
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1 Introduction 

An understanding of a person’s activities and the extent to which activities are being 

achieved or not can be used to improve self-monitoring and self-care at home, including 

their quality of life [1]. There are two main challenges to implementing activity 

recognition at home. First, there is the challenge of retrofitting residences with sensors. 

Typically, smart home solutions have hundreds of sensors with the aim of collecting 

data to recognize a range of different activities. The cost and complexity of such 

installations often prevents their take-up in real-world applications. Second, even with 

large amounts of sensor data, there are challenges to developing machine learning 

models for activity recognition. These include noisy sensor data, large numbers of false 

positives, difficulty training activity recognition algorithms on data collected in homes 

with a different layout and the multiple-occupancy problem. Research has typically 

focused on detecting activities of daily living (ADLs), which are tasks that people 

undertake routinely in their everyday lives, for example, eating, sleeping and grooming 

[2]. There is less research on monitoring meaningful activities, i.e. physical, social, and 

leisure activities  that provide the patient with “emotional, creative, intellectual, and 

spiritual stimulation” [3], as an important  indicator of quality of life.   
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To address these challenges, we developed and investigated a toolkit composed of a 

small number of low-cost off-the-shelf passive sensors, typically up to 10, which were 

retrofitted into real, sometimes multiple-occupancy homes to detect both ADLs and 

meaningful activities. To measure meaningful activities we employed beacons sensors, 

small devices that broadcast packets of data over Bluetooth, and are placed on objects 

in the home that residents interact with frequently. This allows capturing more minute 

details on a resident’s activities. For example, in [4] the authors demonstrated how 

accelerometer data captured from beacon sensors could detect not only the presence of 

residents interacting with the objects, but also the way the objects were moved (e.g. 

placing a knife on the table vs. using the knife to cut food in its preparation). Niu et al. 

[5] propose a similar approach using BLE (Bluetooth Low Energy) beacons to measure 

movement and achieved an accuracy of 70% averages across seven activities.  There 

are challenges with the use of such small sensors affixed to objects. In addition to the 

size constraints of the sensors themselves, energy consumption can be a problem, as 

analyzing accelerometer data requires a high transmission rate in order to capture the 

movements effectively with machine learning techniques. However, accuracy of 

detection using beacons is relatively high and they are suited to multiple occupancy 

environments as they can provide specific location accuracy allowing to identify who 

is interacting with a device.  We collected data from five users in five different homes, 

each over a period of one week. Three of the homes were multi occupancy homes. We 

used this data to train five machine learning algorithms and evaluated their accuracy in 

recognizing ADLs and meaningful activities. In this paper we present the methods 

employed in our study, including how we collected data and ground truth labels from 

human participants, and how we trained and evaluated the machine learning models. 

We present our results, focusing on the overall accuracy of the machine learning models 

as well as the accuracy in recognizing individual activities. We conclude by discussing 

the potential implications of our work, as well as directions for future research. 

2 Methods 

2.1 Data Collection 

We recruited 5 participants (3 males, 2 females), all aged 18 and above, without any 

cognitive or physical impairments to take part in a pilot study. We received ethics 

approval prior to commencing the study and obtained informed consent from all 

participants. Participants were able to choose a set of activities (Table 2), agreed 

between the researcher and each participant, with a mixture of ADLs and meaningful 

activities. Participants carried out a set of activities over the course of one week in their 

own homes.  To detect interaction with objects around the home six main sensor types 

were used - motion, door, power, ambient (temperature and humidity), pressure and 

beacon sensors.  The motion, door, and pressure sensors are binary sensors that can 

detect motion in an environment, for example, opening of a door and the application of 

a pressure on a surface such as a bed respectively. The temperature, humidity, and 

power sensors are continuous sensors that detect changes in temperature, humidity and 

power surges. Finally, the beacon sensor is a binary sensor that detects the disturbance 

of any object or surface it is attached to. For example, they were attached to bookmarks 

and the remote control for the TV. Based on the selected set of activities, the appropriate 
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set of sensors was provided and installed by the researcher, who noted down the 

location on a rough sketch of the floor plan of the participant’s home.  During the study, 

data collected from the sensors was stored in a database on a Raspberry Pi. Because of 

the time-dependent nature of the data being stored, we used InfluxDB [6], an open-

source time series database framework, optimized for fast, storage and retrieval of time 

series data. The motion, door and ambient sensors were from the same manufacturer, 

Xiaomi. The pressure and power sensors interfaced with the Raspberry Pi, using a z-

wave communication protocol. We used the Home Assistant open-source framework 

[7] as a service for asynchronously listening for sensor readings and updating the 

InfluxDB database. A typical kit was composed of 25 sensors and cost on average £412 

including the hub components. 

Data collection took place over February and March 2019. Participants recorded a 

log of activities using a journaling app called ATracker [8] on an Android tablet to 

record the start and end time of activities as they were completed. These logs were used 

as ground truth labels for the sensor data. We collected data for 14 activities. There was 

high variation in the frequency and the duration of completing each task. Sleeping, was 

recorded the most frequently (11 times) and recorded the most (95.34 hours), followed 

by Going Out (10 times, 30.44 hours). Food preparation was the most frequently 

recorded activity (24 times) but on average took much less time (0.29 hours). On the 

other end of activity frequency and duration were Vacuuming (3 times), Nail Care (2 

times), Grooming (2 times), Laundry (3 times) and Playing Board Games (1 times); 

these activities only happened infrequently and also recorded the least amount of time 

overall. To reduce bias in the prediction models (such that models developed would not 

be biased towards classes with higher frequency or duration), we removed infrequent 

activities where there are not enough training and testing data (playing board games) 

and we applied a class weight to “boost” activities with lower frequencies.  

 

2.2 Model Development and Evaluation 

We used the ScikitLearn Python machine learning library to implement SVM, Naïve 

Bayes, Logistic Regression, and Perceptron models. The Naïve Bayes was multinomial 

and trained with an adaptive smoothing parameter (alpha) of 0.01. The SVM model 

was trained with 5 maximum epochs. The Perceptron model was trained with a stopping 

criterion of 1e-3. The RNN was implemented with the TensorFlow framework and 

trained with a learning rate of 0.001, weight decay of 0.005 and under 2 epochs. Data 

was split into training and validation sets by a 75:25 ratio. Model performance was 

measured by comparing predicted activities with ground truth gathered via the Atracker 

app. We calculated accuracy for each algorithm as a ratio of all correctly labelled data 

point to all test data points. To take into consideration the imbalanced nature of the 

data, we also computed micro and macro averages for precision, recall, and F1-score. 

3 Results 

3.1 Model Accuracy 

RNN achieved the highest average accuracy, correctly recognizing 65.59% of the 

activities from the dataset followed closely by Perceptron on 65.09%. The other models 
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performed as follows - SVM (59.3), Logistic Regression (58%) and Naïve Bayes 

(53.95%). The micro-average, macro-average and F1 scores for each classifier and 

shown in Table 1. The RNN yields the highest scores, with macro-average precision 

and recall scores of 0.88 and 0.41 respectively, and an F1-score of 0.46. It significantly 

outperforms the other classifiers at correctly recognizing a range of activities, achieving 

a macro average F1-score that is 228.5% higher than the Perceptron. A McNemar test 

with alpha = 0.05.indicated that the prediction performance of the RNN was statistically 

significant compared with the other four models. We hypothesize that the superiority 

of RNN is owed to its inherent feedback architecture, which allows it to hold latent 

information about the previous state of the model in memory. For example, the Sleeping 

activity is typically completed in 8 hours, hence a suitable time window for tracking 

the Sleeping activity will be too large for tracking Laundry (which typically takes 40 

minutes). The RNN model is better able to adjust its weight (during the training step) 

to adaptively retain information. 

Table 1. Micro-averaged and macro-averaged precision, recall and F1-scores  

Algorithms  Precision Recall F1-Score  

     

SVM 
Micro Average 0.59 0.59 0.59 

Macro Average 0.18 0.10 0.09 

Naïve Bayes 
Micro Average 0.54 0.54 0.54 

Macro Average 0.04 0.07 0.05 

Logistic Regression 
Micro Average 0.58 0.58 0.58 

Macro Average 0.11 0.10 0.09 

Perceptron 
Micro Average 0.65 0.65 0.65 

Macro Average 0.16 0.14 0.14 

RNN 
Micro Average 0.56 0.56 0.56 

Macro Average 0.88 0.41 0.46 

 

3.2 Activity Accuracy 

We explored the performance of the models across the different activities (Table 2). 

The Perceptron had high overall accuracy and a high micro-average accuracy, however, 

the macro-average accuracy showed that it is not very good at recognizing a variety of 

activities. In comparison, RNN can recognize a much wider range of activities reliably 

than the Perceptron. Seven activities had low F1-scores across all algorithms - Washing 

Dishes, Mealtime, Food Prep, Watching TV, Sleeping, Reading and Grooming.  

Table 2. F1-scores per activity, decreasing order of RNN’s F1 score  

 SVM Naïve Bayes  Logistic Regression  Perceptron RNN 

Nailcare 0.00 0.00 0.00 0.00 1.00 

Laundry 0.00 0.00 0.00 0.00 0.98 

Housekeeping 0.00 0.00 0.00 0.00 0.85 

Bathing 0.00 0.00 0.00 0.00 0.82 

Mealtime 0.00 0.00 0.00 0.00 0.22 

Dressing 0.00 0.00 0.00 0.00 0.75 
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No Activity 0.72 0.70 0.72 0.76 0.71 

Wash Dishes 0.00 0.00 0.00 0.00 0.46 

Food prep 0.00 0.00 0.00 0.00 0.14 

Watching TV 0.00 0.00 0.00 0.31 0.11 

Sleeping 0.16 0.00 0.00 0.00 0.04 

Going Out 0.40 0.00 0.51 0.88 0.04 

Reading 0.00 0.00 0.00 0.00 0.00 

Grooming 0.00 0.00 0.00 0.00 0.00 

4 Discussion and Conclusions 

Our results demonstrate that an RNN model shows promise given a limited number of 

cheap off-the-shelf sensors and a low number of training examples. Activities that 

involved a number of distinct subtasks were difficult to detect, e.g. meal times may 

involve laying a table with cutlery or plates and sitting at a table. Furthermore, real 

users may have different routines, for example, breakfast may be a faster event and 

involve fewer tasks than eating dinner. This suggests careful consideration needs to be 

given to the set and combination of sensors to capture activities. Furthermore, high 

levels of personalization are likely to be necessary for detecting meaningful activities, 

which can be learned from datasets collected over longer periods to analyze user habits.  

In future work we are interested in addressing our limitations in using BLE sensors. 

Rather we propose the use of conventional Bluetooth. Although this will consume more 

energy, they can be detected by sensors on mobile devices more consistently. This 

approach can detect location and therefore activity recognition in multi-occupancy 

scenarios and may also help recognizing more personalized meaningful activities.  
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