Skip to main content

Predicting Drug-Drug Interactions from Heterogeneous Data: An Embedding Approach

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12721))

Included in the following conference series:

Abstract

Most approaches for predicting drug-drug interactions (DDIs) have focused on text. We present the first work that uses multiple drug structure data - images, string representations and relationship representations. We exploit the recent advances in deep networks to integrate these varied sources of inputs in predicting DDIs. Our empirical evaluations clearly demonstrate the efficacy of combining heterogeneous data in predicting DDIs.

D.S. Dhami and S. Yan—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://pubchem.ncbi.nlm.nih.gov/.

  2. 2.

    https://www.drugbank.ca/.

  3. 3.

    https://github.com/hkmztrk/SMILESVecProteinRepresentation.

  4. 4.

    https://starling.utdallas.edu/software/boostsrl/.

References

  1. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: COLT (1998)

    Google Scholar 

  2. Chen, X., Liu, X., Wu, J.: Drug-drug interaction prediction with graph representation learning. In: BIBM (2019)

    Google Scholar 

  3. Chopra, S., Hadsell, R., LeCun, Y., et al.: Learning a similarity metric discriminatively, with application to face verification. In: CVPR, vol. 1 (2005)

    Google Scholar 

  4. Dhami, D.S., Kunapuli, G., Das, M., Page, D., Natarajan, S.: Drug-drug interaction discovery: Kernel learning from heterogeneous similarities. Smart Health (2018)

    Google Scholar 

  5. DHHS: adverse events in hospitals: national incidence among medicare beneficiaries (2010). https://oig.hhs.gov/oei/reports/oei-06-09-00090.pdf

  6. Huang, K., Xiao, C., Hoang, T.N., Glass, L.M., Sun, J.: Caster: predicting drug interactions with chemical substructure representation. AAAI (2020)

    Google Scholar 

  7. Khot, T., Natarajan, S., Kersting, K., Shavlik, J.: Learning Markov logic networks via functional gradient boosting. In: ICDM (2011)

    Google Scholar 

  8. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  9. Natarajan, S., Khot, T., et al.: Gradient-based boosting for statistical relational learning: the relational dependency network case. Mach. Learn. 86, 25–56 (2012)

    Article  MathSciNet  Google Scholar 

  10. Purkayastha, S., Mondal, I., et al.: Drug-drug interactions prediction based on drug embedding and graph auto-encoder. In: BIBE (2019)

    Google Scholar 

  11. Segura-Bedmar, I., Martinez, P., de Pablo-Sánchez, C.: Using a shallow linguistic kernel for drug-drug interaction extraction. J. Biomed. Inform 44(5), 789–804 (2011)

    Article  Google Scholar 

  12. Weininger, D.: SMILES, a chemical language and information system. 1.28 introduction to methodology and encoding rules. J. Chem. Inform. Comput. Sci. 28, 31–36 (1988)

    Article  Google Scholar 

  13. Öztürk, H., Ozkirimli, E., Özgür, A.: A novel methodology on distributed representations of proteins using their interacting ligands. Bioinformatics 34, i295–i303 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge DARPA Minerva award FA9550-19-1-0391. Any opinions, findings, and conclusion or recommendations expressed are those of the authors and do not necessarily reflect the view of the AFOSR, DARPA or the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Singh Dhami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dhami, D.S., Yan, S., Kunapuli, G., Page, D., Natarajan, S. (2021). Predicting Drug-Drug Interactions from Heterogeneous Data: An Embedding Approach. In: Tucker, A., Henriques Abreu, P., Cardoso, J., Pereira Rodrigues, P., Riaño, D. (eds) Artificial Intelligence in Medicine. AIME 2021. Lecture Notes in Computer Science(), vol 12721. Springer, Cham. https://doi.org/10.1007/978-3-030-77211-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77211-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77210-9

  • Online ISBN: 978-3-030-77211-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics