Abstract
Most approaches for predicting drug-drug interactions (DDIs) have focused on text. We present the first work that uses multiple drug structure data - images, string representations and relationship representations. We exploit the recent advances in deep networks to integrate these varied sources of inputs in predicting DDIs. Our empirical evaluations clearly demonstrate the efficacy of combining heterogeneous data in predicting DDIs.
D.S. Dhami and S. Yan—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: COLT (1998)
Chen, X., Liu, X., Wu, J.: Drug-drug interaction prediction with graph representation learning. In: BIBM (2019)
Chopra, S., Hadsell, R., LeCun, Y., et al.: Learning a similarity metric discriminatively, with application to face verification. In: CVPR, vol. 1 (2005)
Dhami, D.S., Kunapuli, G., Das, M., Page, D., Natarajan, S.: Drug-drug interaction discovery: Kernel learning from heterogeneous similarities. Smart Health (2018)
DHHS: adverse events in hospitals: national incidence among medicare beneficiaries (2010). https://oig.hhs.gov/oei/reports/oei-06-09-00090.pdf
Huang, K., Xiao, C., Hoang, T.N., Glass, L.M., Sun, J.: Caster: predicting drug interactions with chemical substructure representation. AAAI (2020)
Khot, T., Natarajan, S., Kersting, K., Shavlik, J.: Learning Markov logic networks via functional gradient boosting. In: ICDM (2011)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Natarajan, S., Khot, T., et al.: Gradient-based boosting for statistical relational learning: the relational dependency network case. Mach. Learn. 86, 25–56 (2012)
Purkayastha, S., Mondal, I., et al.: Drug-drug interactions prediction based on drug embedding and graph auto-encoder. In: BIBE (2019)
Segura-Bedmar, I., Martinez, P., de Pablo-Sánchez, C.: Using a shallow linguistic kernel for drug-drug interaction extraction. J. Biomed. Inform 44(5), 789–804 (2011)
Weininger, D.: SMILES, a chemical language and information system. 1.28 introduction to methodology and encoding rules. J. Chem. Inform. Comput. Sci. 28, 31–36 (1988)
Öztürk, H., Ozkirimli, E., Özgür, A.: A novel methodology on distributed representations of proteins using their interacting ligands. Bioinformatics 34, i295–i303 (2018)
Acknowledgements
We gratefully acknowledge DARPA Minerva award FA9550-19-1-0391. Any opinions, findings, and conclusion or recommendations expressed are those of the authors and do not necessarily reflect the view of the AFOSR, DARPA or the US government.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Dhami, D.S., Yan, S., Kunapuli, G., Page, D., Natarajan, S. (2021). Predicting Drug-Drug Interactions from Heterogeneous Data: An Embedding Approach. In: Tucker, A., Henriques Abreu, P., Cardoso, J., Pereira Rodrigues, P., Riaño, D. (eds) Artificial Intelligence in Medicine. AIME 2021. Lecture Notes in Computer Science(), vol 12721. Springer, Cham. https://doi.org/10.1007/978-3-030-77211-6_28
Download citation
DOI: https://doi.org/10.1007/978-3-030-77211-6_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-77210-9
Online ISBN: 978-3-030-77211-6
eBook Packages: Computer ScienceComputer Science (R0)