Skip to main content

A Probabilistic Approach to Extract Qualitative Knowledge for Early Prediction of Gestational Diabetes

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12721))

Included in the following conference series:

  • 2204 Accesses

Abstract

Qualitative influence statements are often provided a priori to guide learning; we answer a challenging reverse task and automatically extract them from a learned probabilistic model. We apply our Qualitative Knowledge Extraction method toward early prediction of gestational diabetes on clinical study data. Our empirical results demonstrate that the extracted rules are both interpretable and valid.

A. Karanam and A. L. Hayes—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Without loss of generality, assume the variables in synergistic relation have monotonically increasing impact.

  2. 2.

    Refer to the supplementary material for details on the data and features: https://starling.utdallas.edu/papers/QuaKE/.

References

  1. Altendorf, E.E., Restificar, A.C., Dietterich, T.G.: Learning from sparse data by exploiting monotonicity constraints. In: UAI, pp. 18–26 (2005)

    Google Scholar 

  2. Colombo, D., Maathuis, M.H.: Order-independent constraint-based causal structure learning. J. Mach. Learn. Res. 15(1), 3741–3782 (2014)

    MathSciNet  Google Scholar 

  3. Haas, D.M., Parker, C.B., et al.: A description of the methods of the nulliparous pregnancy outcomes study: monitoring mothers-to-be (nuMoM2b). Am. J. Obstet. Gynecol. 212(4), 539.e1–539.e24 (2015)

    Article  Google Scholar 

  4. Hedderson, M.M., Darbinian, J.A., Ferrara, A.: Disparities in the risk of gestational diabetes by race-ethnicity and country of birth. Paediatr. Perinat. Epidemiol. 24(5), 441–448 (2010)

    Article  Google Scholar 

  5. Kokel, H., Odom, P., Yang, S., Natarajan, S.: A unified framework for knowledge intensive gradient boosting: leveraging human experts for noisy sparse domains. In: AAAI, vol. 34, pp. 4460–4468 (2020)

    Google Scholar 

  6. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, Burlington (1988)

    Google Scholar 

  7. Spirtes, P., Glymour, C.: An algorithm for fast recovery of sparse causal graphs. Soc. Sci. Comput. Rev. 9(1), 62–72 (1991)

    Article  Google Scholar 

  8. Wellman, M.P.: Fundamental concepts of qualitative probabilistic networks. Artif. Intell. 44(3), 257–303 (1990)

    Article  MathSciNet  Google Scholar 

  9. Yang, S., Natarajan, S.: Knowledge intensive learning: combining qualitative constraints with causal independence for parameter learning in probabilistic models. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8189, pp. 580–595. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40991-2_37

    Chapter  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of 1R01HD101246 from NICHD and Precision Health Initiative of Indiana University. Thanks to Rashika Ramola, Rafael Guerrero for data processing and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athresh Karanam .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 206 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karanam, A., Hayes, A.L., Kokel, H., Haas, D.M., Radivojac, P., Natarajan, S. (2021). A Probabilistic Approach to Extract Qualitative Knowledge for Early Prediction of Gestational Diabetes. In: Tucker, A., Henriques Abreu, P., Cardoso, J., Pereira Rodrigues, P., Riaño, D. (eds) Artificial Intelligence in Medicine. AIME 2021. Lecture Notes in Computer Science(), vol 12721. Springer, Cham. https://doi.org/10.1007/978-3-030-77211-6_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77211-6_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77210-9

  • Online ISBN: 978-3-030-77211-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics