Abstract
Qualitative influence statements are often provided a priori to guide learning; we answer a challenging reverse task and automatically extract them from a learned probabilistic model. We apply our Qualitative Knowledge Extraction method toward early prediction of gestational diabetes on clinical study data. Our empirical results demonstrate that the extracted rules are both interpretable and valid.
A. Karanam and A. L. Hayes—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Without loss of generality, assume the variables in synergistic relation have monotonically increasing impact.
- 2.
Refer to the supplementary material for details on the data and features: https://starling.utdallas.edu/papers/QuaKE/.
References
Altendorf, E.E., Restificar, A.C., Dietterich, T.G.: Learning from sparse data by exploiting monotonicity constraints. In: UAI, pp. 18–26 (2005)
Colombo, D., Maathuis, M.H.: Order-independent constraint-based causal structure learning. J. Mach. Learn. Res. 15(1), 3741–3782 (2014)
Haas, D.M., Parker, C.B., et al.: A description of the methods of the nulliparous pregnancy outcomes study: monitoring mothers-to-be (nuMoM2b). Am. J. Obstet. Gynecol. 212(4), 539.e1–539.e24 (2015)
Hedderson, M.M., Darbinian, J.A., Ferrara, A.: Disparities in the risk of gestational diabetes by race-ethnicity and country of birth. Paediatr. Perinat. Epidemiol. 24(5), 441–448 (2010)
Kokel, H., Odom, P., Yang, S., Natarajan, S.: A unified framework for knowledge intensive gradient boosting: leveraging human experts for noisy sparse domains. In: AAAI, vol. 34, pp. 4460–4468 (2020)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, Burlington (1988)
Spirtes, P., Glymour, C.: An algorithm for fast recovery of sparse causal graphs. Soc. Sci. Comput. Rev. 9(1), 62–72 (1991)
Wellman, M.P.: Fundamental concepts of qualitative probabilistic networks. Artif. Intell. 44(3), 257–303 (1990)
Yang, S., Natarajan, S.: Knowledge intensive learning: combining qualitative constraints with causal independence for parameter learning in probabilistic models. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8189, pp. 580–595. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40991-2_37
Acknowledgements
We gratefully acknowledge the support of 1R01HD101246 from NICHD and Precision Health Initiative of Indiana University. Thanks to Rashika Ramola, Rafael Guerrero for data processing and discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Karanam, A., Hayes, A.L., Kokel, H., Haas, D.M., Radivojac, P., Natarajan, S. (2021). A Probabilistic Approach to Extract Qualitative Knowledge for Early Prediction of Gestational Diabetes. In: Tucker, A., Henriques Abreu, P., Cardoso, J., Pereira Rodrigues, P., Riaño, D. (eds) Artificial Intelligence in Medicine. AIME 2021. Lecture Notes in Computer Science(), vol 12721. Springer, Cham. https://doi.org/10.1007/978-3-030-77211-6_59
Download citation
DOI: https://doi.org/10.1007/978-3-030-77211-6_59
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-77210-9
Online ISBN: 978-3-030-77211-6
eBook Packages: Computer ScienceComputer Science (R0)