Skip to main content

An MSVL-Based Modeling Framework for Back Propagation Neural Networks

  • Conference paper
  • First Online:
Structured Object-Oriented Formal Language and Method (SOFL+MSVL 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12723))

  • 305 Accesses

Abstract

With the rapid development and wide application of artificial neural networks, formal modeling and verification of their security become more and more significant. As a basic step towards the direction, this work proposes a comprehensive modeling framework for back propagation (BP) neural networks based on the formal language MSVL. In this framework, the structure and behavior of a BP neural network are formalized as specifications of data structures and operations, and they are in turn implemented as MSVL structs and functions, respectively. Based on the formalization, models of BP neural networks can be constructed and trained according to the requirements of users. Experimental results show that these models have good performance in terms of metrics concerning training and prediction such as loss and accuracy.

This research is supported by National Natural Science Foundation of China Grant Nos. 61972301, 61672403 and 61732013, National Natural Science Foundation of Shaanxi Province under Grant No. 2020GY-043, and Shaanxi Key Science and Technology Innovation Team Project Grant No. 2019TD-001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Data set acquisition address: http://yann.lecun.com/exdb/mnist/.

References

  1. Chen, Y., Chi, Y., Fan, J., Ma, C.: Gradient descent with random initialization: fast global convergence for nonconvex phase retrieval. Math. Program. 176(1–2), 5–37 (2019). https://doi.org/10.1007/s10107-019-01363-6

  2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Hoboken (2000)

    Google Scholar 

  3. Williams, R.J., Rumelhart, D.E., Hinton, G.E.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  4. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press, Beijing (2006)

    Google Scholar 

  5. Duan, Z., Tian, C.: A unified model checking approach with projection temporal logic. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 167–186. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88194-0_12

    Chapter  Google Scholar 

  6. Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Sci. Comput. Program. 70(1), 31–61 (2008)

    Article  MathSciNet  Google Scholar 

  7. Ghodsi, Z., Gu, T., Garg, S.: Safetynets: verifiable execution of deep neural networks on an untrusted cloud. In: NIPS, pp. 4672–4681 (2017)

    Google Scholar 

  8. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Whye Teh, Y., Titterington, M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, Chia Laguna Resort, Sardinia, vol. 9, pp. 249–256. PMLR (2010)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778. IEEE Computer Society (2016)

    Google Scholar 

  10. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1

    Chapter  Google Scholar 

  11. Kanso, K., Setzer, A.: A light-weight integration of automated and interactive theorem proving. Math. Struct. Comput. Sci. 26(01), 129–153 (2016)

    Article  MathSciNet  Google Scholar 

  12. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5

    Chapter  Google Scholar 

  13. Khirirat, S., Feyzmahdavian, H.R., Johansson, M.: Mini-batch gradient descent: faster convergence under data sparsity. In: CDC, pp. 2880–2887. IEEE (2017)

    Google Scholar 

  14. Kingma, D.P., Adam, J.B.: A method for stochastic optimization. In: ICLR (Poster) (2015)

    Google Scholar 

  15. Pang, T., Xu, K., Dong, Y., Du, C., Chen, N., Zhu, J.: Rethinking softmax cross-entropy loss for adversarial robustness. CoRR, abs/1905.10626 (2019)

    Google Scholar 

  16. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying neural networks. In: Proceedings ACM Programming Language 3(POPL) (2019). Article 41

    Google Scholar 

  17. Tian, C., Duan, Z.: Expressiveness of propositional projection temporal logic with star. Theoretical Comput. Sci. 412, 1729–1744 (2011)

    Article  MathSciNet  Google Scholar 

  18. Wang, X., Tian, C., Duan, Z., Zhao, L.: MSVL: a typed language for temporal logic programming. Front. Comput. Sci. 11(5), 762–785 (2017). https://doi.org/10.1007/s11704-016-6059-4

    Article  Google Scholar 

  19. Randall Wilson, D., Martinez, T.R.: The general inefficiency of batch training for gradient descent learning. Neural Networks 16(10), 1429–1451 (2003)

    Google Scholar 

  20. Yang, K., Duan, Z., Tian, C., Zhang, N.: A compiler for MSVL and its applications. Theor. Comput. Sci. 749, 2–16 (2018)

    Article  MathSciNet  Google Scholar 

  21. Zhang, H., Cheng, X., Zang, H., Park, D.H.: Compiler-level matrix multiplication optimization for deep learning. CoRR, abs/1909.10616 (2019)

    Google Scholar 

  22. Zhang, N., Duan, Z., Tian, C.: Model checking concurrent systems with MSVL. Sci. China Inf. Sci. 59(11), 101–118 (2016). https://doi.org/10.1007/s11432-015-0882-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaobing Wang or Xinfeng Shu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, L., Feng, Z., Wang, X., Shu, X. (2021). An MSVL-Based Modeling Framework for Back Propagation Neural Networks. In: Xue, J., Nagoya, F., Liu, S., Duan, Z. (eds) Structured Object-Oriented Formal Language and Method. SOFL+MSVL 2020. Lecture Notes in Computer Science(), vol 12723. Springer, Cham. https://doi.org/10.1007/978-3-030-77474-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77474-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77473-8

  • Online ISBN: 978-3-030-77474-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics